

DUO
N.V

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
A USER-ORIENTED MICROPROCESSOR SHELL

COMMAND LANGUAGE INTERPRETER

by

Dennis J. Rit.aldato

and

David J. Smania

September 1983

Thesis Advisor

:

Ronald Modes

Approved for public release; distribution unlimited

f2 1 5 677

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Bntarad)

REPORT DOCUMENTATION PAGE
r REPORT NUMBER

2. GOVT ACCESSION NO

4. TITLE (and Submit)

A User-Oriented Microprocessor Shell
Command Language Interpreter

7. AuTHOCfi;

Dennis J. Ritaldato and
David J. Smania

9. PERFORMING ORGANIZATION NAME ANO AOOPESS

Naval Postgraduate School
Monterey, California 95943

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3- RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT A PERIOO COVEREO

Master's Thesis
September, 1983

6. PERFORMING ORG. REPORT NUMBER

S. CONTRACT OR GRANT NUMBERf*)

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME ANO ADDRESS

Naval Postgraduate School
Monterey, California 93943

12. REPORT DATE

September, 1983
13. NUMBER OF PAGES

116
14. MONITORING AGENCY NAME 4 AOORESSf" S«5Sl from Controlling Olllc*) 15. SECURITY CLASS, (ol thit report)

UNCLASSIFIED

IS*. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

l«. DISTRIBUTION STATEMENT (al thit Rapott)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (al tha abatrael antarad In Stock 30, II dtttarant irom Raport)

It. SUPPLEMENTARY NOTES

IS. KEY WORDS (Canllnua on rarataa aid* II naeaaaaty and Idantity by block nuatbar)

Command Language, Shell, Interpreter, User-friendly

20. ABSTRACT (Camttnua an ravaraa alda II nacaaaary and Idantity by block nuotbat)

The design of a microprocessor command language, RSCL, is discus

RSCL provides the capability of building variable shell environ
ments on a standard microprocessor system. These environments p
ent a menu driven, screen oriented user interface as opposed to

line oriented interface of current operating systems.
The RSCL is a straightforward, easily understandable and comple
computer programming language. Designed according to specific
mand language guidelines, it allows the
utility of his skills.

res
the

te
:om-

user to make
(Continued)

DO FORM
I JAN 73 1473 EDITION OF I NOV «S IS OBSOLETE

S/N 0)02- LF- 014-6601 \ SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Kntarae

y^ CuWlTY CLASSIFICATION OF THIS P*GEQV»iti D>c tnHwJ

ABSTRACT (Continued) Block # 20

A prototype implementation and sample program runs are included.
These illustrate the design features and serve as a test platform
for future research.

DD Form 1473

S/N ifl0i-014-6601 2 security class.f.cat.on of this p*g€C**« o-» *•»•'•<»

Approved for public release; distribution unlimited

A User-Oriented
Microprocessor Shell Command Language Interpreter

by

Dennis J. Ritaldato
B.S.E.E. Villanova University 1974
M.S.E.E. Drexel University 1981

and

David J. Smania
Lieutenant Commander, United States Navy

B.S. Weber State College 1972
M.A. Pepperdine Onivsrsity 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1933

,

ABSTRACT

The design of a microprocessor command language, RSCL,

is discussed. RSCL provides the capability of building

variable shell environments on a standard microprocessor

system. These environments present a menu driven, screen

oriented user interface as opposed to the line oriented

interface of current operating systsms.

The RSCL is a straightforward, easily understandable and

complete computer programming language. Designed according

to specific command language guidelines, it allows the user

to make maximum utility of his skills.

A prototype implementation and sample program runs are

included. These illustrate the design features and serve as

a test platform for future research.

ACKNOWLEDGMENTS

The authors wish to thank the following people. LCDR Eon

Modes, our advisor, for supplying the necessary guidance and

support to see us through the difficult times. Prof Dan

Davis, our second reader, for his insight into future trends

in user friendly systems. Mr. Al Wong for his assistance in

debugging our •C interpreter. Finally, and most impor-

tantly, to our wives. Dawn and aoyan, and our children

Dennis and Annie and Stacy, Suzanne, Shelly and Scott for

supporting the successful completion of our work.

TRADEMARKS

CP/M is a registered trademark of Digital Research,

Display Manager is a trademark of Digital Research.

TABLE OF CONTEHTS

I. INTRODUCTION 10

A. BACKGROUND 10

B. PURPOSE 13

C. SCOPE 13

II. COMMAND LANGUAGE ISSUES 14

A. DESIGN ISSUES 14

1. COMMUNICATION STYLES 14

2. DESIGN GUIDELINES 15

3. USER PROGRAMMING LEVELS 16

4. DISPLAY FORMATS 17

III. R5S COMMAND LANGUAGE FEATURES 19

A. RSCL COMMANDS 19

1. BUILT IN FEATURES 19

2. LANGUAGE LIMITATIONS 20

3. LANGUAGE COMMANDS 20

IV. SYSTEM DESIGN 24

A. DESIGN ASSUMPTIONS 24

B. DESIGN CRITERIA 24

C. DESIGN DECISIONS 26

V. IMPLEMENTATION 29

A. DATA ORGANIZATION 29

B. PROGRAM ORGANIZATION 29

C. RUNTIME ERROR CHECKING 30

VI. SYSTEM OPERATION 31

VII. CONCLUSIONS AND RECOMMENDATIONS 32

A. GOALS 32

3. PROBLEM AREAS 32

C. FUTURE WORK 33

APPENDIX A: COMMAND LANGUAGE GRAMMAR 34

APPENDIX B: R&S COMMAND LANGUAGE USER'S MANUAL 37

A. INTRODUCTION 37

B. LEXICAL CONVENTIONS 37

1. TOKEN DESCRIPTIONS 37

C. DECLARATIONS 40

D. SYNTAX 40

E. PROGRAM STRUCTURE 40

1. The LET Statement 42

2. The GET Statement 45

3. The PUT Statement 48

4. The IF Statement 50

5. The LOOP Statement 52

6. The CASE Statement 54

7. The CREATE Statement 56

8. The DISPLAY Statement 56

F. GENERAL ERROR HANDLING 57

APPENDIX C: PROGRAM SOURCE CODE LISTING 59

LIST OF REFERENCES 113

BIBLIOGRAPHY 114

INITIAL DISTRIBUTION LIST 116

LIST OF FIGUBES

1.1 ANSI OSCL Study Recommendations 11

1.2 Dutch JCL Committee^ Basis Job Functions . . .12
2.1 Four User Programming Levsls 16

B. 1 Sample Command Language Program 41

B.2 Example of Two Line Formatting Techniques ... 41

B.3 SAMPLE LET STATEMENTS 45

B.4 SAMPLE GET STATEMENTS 46

B.5 SAMPLE PUT STATEMENTS 49

B.6 SAMPLE IF STATEMENT 52

B.7 SAMPLE LOOP STATEMENT 5 3

B.8 SAMPLE CASE STATEMENT 55

I. INTRODUCTION

A. BACKGBODNO

In the early days of computing it was simply man against the

primitive operations of the computer. There was no need for

any Command language because programming was done bit by bit

without complex interfacing. Computer systems consisted of

many tubes, a few cable connections, and possibly a periph-

eral device to display the results (output). The programmers

of the early days were considered jack of all trades. They

designed the rudimentary programs, entered them bit by bit

by re-arranging the cable configurations and should problems

arise they were the only trained maintenance technicians.

This idyllic situation did not persist for long.

Advances in computer technology especially in regards to

resources available made it imperitive that the user be

given some access mechanism to these resources. The first

system to provide such a means was the IBM 360. The system

required precise instructions to execute the system func-

tions. Unfortunately, these instructions were not self

generated like today's systems but required external media

intervention. This external media was in the form of punch

cards each containing a precise coded instruction which was

then feed into the system along with the program card deck.

The system designers either misconceived the effect of these

cards on programmers or miscalculated their abilities to

achieve an automated system. The result was catastrophic.

The first of the Command languages was a piece meal language

conceived in part as an after thought to a poor system

design. The IBM language called a JCL (Job Control Language)

did just that, it controlled the program execution by the

10

insertion of instruction cards throughout the program to

manage the system* s resources. The language was ambiguous,

inconsistant, machine dependent and designed with little

concern for the user. The impact of the IBM JCL language

spawned numerous reserch efforts several of which are

outlined.

During the late 1960«s and early 1970's several organi-

zations established working groups to study the JCL and OSCL

(Operaing System Control Language) interface problem. The

first organization tc study the problem was the American

Standards Institute Committee on Programming Languges (ANSI)

in June of 1967 [Hef. 1]. They conducted extensive surveys

of nine existing 0/S systems and their control languages.

Their findings concluded with a list of five recommendations

I 1. The need for a standard OSCL exists and its
I attainment is possible
I 2. Several features now present in 0/S should
I not be included in the standard
I 3. None of the existing OSCL's surveyed are

suitable as candidates for a standard language
There should only be a single standard OSCL
Piecemeal standardization should be avoided

4.
5.

_j

Figure 1.1 ANSI OSCL Study Recommendations.

for a design proposal, figure 1.1

The Dutch established committees in September of 1971

and conducted numerous meetings under the auspicies of the

Netherlands Centre for Informatics. They focused on the

basic functions of job control as related to data processing

and job control inputs. The committee developed a list of

basic job control functions, Figure 1.2, is a synopsis of

their classification of related O/S funcions.

11

1. Allocation (of resources)
I

2. Conditional Selection (of part of a job)
I

3. Execution (of a computer program)
4. Declaration (of job attributes)

Figure 1.2 Dutch JCL Committee^ Basic Job Functions.

In late 1972 the CODASYL (Conference on Data System

Languages) organization conducted follow on studies to the

ANSI res€arch. They determined that the ANSI committee had

only addressed the feasability aspect of a standardized

language and so set out to design a standard OSCL language.

Three working goals were established to guide the research:

investigate the functional requirements for communications

between the user, the functional program and the hardware;

determine the functions necessary to define a standard OSCL

language and what problems such a language would have on an

0/S ; develop linguistic elements which posses these func-

tions and define a machine-independent OSCL.

Since these early studies Other organizations i.e. US

Federal Information Processing Standards (FIPS) , IEEE, ACM,

British Computer Society, US Department of Defense (DOD) ,

etc. both governmant and privately sponsored have contrib-

uted to the research and development of several prototype

OSCL languages.

The problem of standardizing Command Languages has

perpetuated itself ever the years. To date only a few

languages (systems) merit any consideration as possible

solutions.

12

B. PURPOSE

The purpose of this project was to design a system which

will enable the user to easily define a screen oriented

environment (shell) for interfacing to microprocessor based

computer systems.

The shell provides an abstract view of the computer

system to the user. Through it command access can be

controlled and a standard JCL can be created which will

operate on multiple computers and operating systems. In

this way, any computer system can be tailored to perform

exactly as desired fcr each command. In addition, the same

commands can be made to execute in exactly the same manner

regardless of the resident operating system. This can have

substantial cost saving effects in locations where multiple

computers are used. Personnel will not have to be trained

for each system since all systems will operate with the same

JCL.

C. SCOPE

Chapter two discusses the issues involved in the design of a

command language. Guidelines for the design are also

presented. The features of ths command language are

described in Chapter three. Chapter four discusses the

factors which were involved in the design. The assumptions

made, the criteria established and the decisions based on

them are listed. A prototype implementation is described in

Chapter five. The operation of the system from the point of

view of a user creating a shell environment with the command

language is discussed in Chapter six. Our conclusions and

recommendations including the results of the prototype

implementation are presented in Chapter seven. Appendices

A, B and C include the RSCL grammar, a User's Manual for the

HSCL and a CLI program source code listing of the prototype

implementation, respectively.

13

II. COMMAND LANGUAGE ISSUES

A. DESIGN ISSUES

Four design issues confront the designers of any interactive

Command language [Hef. 2]. First, how many modes of opera-

tion should the user be forced to learn. Second, the selec-

tion seguence of commands should be consistant and not

change with varying machine implementation schemes. Third,

an abort mechanism must be provided to the user to terminate

a command seguence without losing the current scope or envi-

ronment. Finally, a clear and concise error message system

must be provided to quickly resolve syntactic and semantic

problems. These design issues are not all inclusive and

further issues will be brought forward as the need arises.

1. COMMUNICATION STYLES

Many CL (command language) communication styles are avail-

able today. Direct keyboard entry, using pre-defined

commands, allows the user to directly control the machine

operations, but requires the user to learn a new, possibly

criptic, language for each OS/machiae used. Another method

uses keyboard response dialogue to screen prompts. This

method is easier to use, but reguires modification of the

prompts whenever a change in functions is made. Function

keys are a third method for users to communicate with the

system. They are very fast and simple to use. The drawback

with this method is some machines do not provide a function

key option or an easy means to redefine the existing key

functions. The last communication style to be mentioned is

the screen menu format. This style is seen as the way of

the future. Commands and data are displayed on the screen

14

in menu form. The user references the command/data by posi-

tioning the cursor at the desired field or by marking the

position with a light pen. Data changed on the screen are

correspondingly changed in the data base. Criptic one-line

commands to the O.S. are no longer required.

Some systems (Xerox Smalltalk) provide a controlled

pointer (mouse) to indicats which function is to be invoked.

The Apple Lisa system uses the position of the cursor to

highlight a chosen function. In sither case the system is

screen oriented providing the user with a simple control

mechanism without the need to learn another language.

2- DESIGN GUIDELINES

Several scholars have suggested guidelines for developing

command languages. Rather then repeat their offerings we

have consolidated our perceptions of the primary guidelines.

. The system must -be consistant. It must present

the same environment to the ussr regardless of

the basic system it is operating on.

. The systei must provide the user with a command

sequence which is easy to use and learn, especially

the most frequently used commands.

. The system must be portable. Dther machines must

be able to adapt to it with minimal modification.

. The systei must provide a suitable error handling

process, both in presenting error messages and in

saving environments.

. The system should be user interactive and provide

the user with the option of selecting the level of

prompt help he desires. Screen oriented displays

are very helpful in selecting operations, but

require complex interface buffaring.

15

. Control structures should be affluent enough to

allow the user total control of the programming

environment.

3. USER PROGRAMMING LEVELS

Different levels of user motivation and programming experi-

ence must be considered when designing a multi-purpose

Command Language system. Figure 2. 1 shows a rough categor-

ization of potential users into four general programming

levels.

1. The Toy Store Programmer
2. The Novice Programmer
3. The Computer Club Programmer
4. The Paid Programmer

Figure 2.1 Four User Prograa»ing Levels.

The first level is the "toy store" programmer. He does not

really want to write an application program, but just wants

to know enough language tools to run a simple game program.

In general, he is in total awe of computers and makes

minimal use of their actual processing capabilites.

Progressing to the second level, the first addres-

sable command language level, we have the user who may have

attended a programming course and who is now challenged to

write a few simple application programs. The user at this

level is enthusiastic and eager to try out his new skills.

A friendly command language will motivate him to the next

level. A poorly designed command language will be frus-

trating and quite possibly curtail future computer queries.

The third level is characterized by a quantum jump

in user motivation. and usually programming skills. These

16

users really want to know how the internal system works and

are willing to expend energy and their own time no learn

varying system hardware and software configurations.

The final level is a grouping of two user factions

into one entity. They are colloguially termed the learned

computer scholars and the commercial programmers. They may

perceive issues from different perspectives, yet their

motives and knowledge of computer linguistics are compat-

ible. Beth require the full system resource capabilities at

their immediate disposal in order to perform to their full

potential.

Realistically, the majority of today's users and

those who are of cencern to a command language designer,

fall within the final two catagories. However, care should

be taken so as not to preclude usa by someone at the second

level.

It is easily understood why Command Languages are so

universally divergent. Designing a command language to

satisfy the dynamic needs of the fourth level users while

still maintaining the simplicity for the novice users is not

a trivial task.

U. D ISPLA Y FORMATS

Another issue which is receiving a great deal of attention

as the state-of-the-art is the display format. Whether to

display data as individual line oriented character strings

or as a menu driven system. The traditional theme, driven

by the hardware limitations of the past, is TTY (teletyp-

writter) format. i.e. Presenting a line at a time. The

user responds in a similiar manner by entering data in line

oriented fashion. Innovations in hardware have enabled

designers to break from tradition and display whole screen

prompts instantaneously.

17

The impact of these innovations has been seer, is

such systems as the Xerox Smalltalk and the Apple Lisa. i.

e. Incorporating the traditional command language line

editing commands into onscreen menu controls. The respose

from critics to these nontraditonai systems has been over-

whelmingly positive.

The real significance of these systems is their

prime objective. They strive to provide the user with a

friendly interface devoid of complsx, ambiguous and incon-

sistant command language structures. To the "real" program-

mers these systems appear as a threat to their mythical man

over machine syndrome. Many feel that programming is an art

and a science and that these systems take away their

creativity by restricting how they can address the computer.

They prefer to deal direct rather than through the

middleman. In reality, a friendlier interface places no

such restrictions. It simply makes it more understandable

so that more users can address the computer direcly. Until

we overcome the system friendliness problem only those in

the "real" programmers category will be willing and able to

fully utilize the computer.

These systems still have some drawbacks such as

overall cost and high memory reguirements. Yet, given the

history of the microprocessor, hardware designers will over-

come the obstacles and make these features available to the

average user.

The command languages of tomorrow will employ the

ease of onscreen control with the user friendliness of

multi-screen display.

18

III. SSS COMMAND LANGUAGE FEATURES

A. RSCL COMMANDS

The RSCL commands were chosen based on the guidelines

outlined in chapter two. Simplicity of use, coupled with

conciseness in definition and execution were paramount in

choosing the RSCL commands.

Research and practical experience indicates that many

command languages are either to baroque or to simple for

their intended purpose. While the RSCL does not encompass

all possible programming language capabilities, it does

fulfill the minimum requirements of a complete language.

And, it does establish a user friendly framework, a design

goal stated in chapter one.

Standard command naming conventions i.e. if-then-else,

put, case etc. were adopted whenever possible. The syntax

structure does not deviate from established norms, while the

semantics of the command language avoids ambiguity.

Exception processing and type conversion is not performed

nor is it implied in any of the commands. If the system

does not know what you intended, it tells you via an error

message. If data types do not match across an assignment

operation, the assignment is not permitted.

1 . BUILT IN FEATURES

Several features have been built into the RSCL which

simplify both the language itself and the programs written

in the language.

. Dynamic data typing (offsets declaration requirements).

. Both interactive and file processing capabilities.

. Automatic file opening and closing operations performed

19

on both the Par and the GET commands.

. Format free statement entry.

. Statements may be entered in either upper or lower case.

2. LANGUAGE LIM ITAT IONS

The language, as designed, has the following limitations:

. Arrays and data structures are not defined.

. Only decimal integers may be represented.

. Floating point arithmetic is not supported.

. Unary operators are not supported.

. Exponentiation is not supported.

In the prototype implementation the following addi-

tional contraints were placed on the system:

. Loop statements may not be nestad.

. Only one string variable may exist at any time.

3. LANGUAGE COMMANDS

The ten RSCL commands were chosen as the minimum number

required to facilitate the requiremants of a screen oriented

command language.

The following is a briaf description of each

command. For a detailed description see the R5S Command

Language User's Manual, Appendix B.

a. LET command

The LET command serves as the assignment statement. The

variable on the left hand side (LHS) of the •»=", receives a

value frcm the right hand side (RHS) . The RHS can be either

an expression, an integer, a string, or another variable

(containing a value of the same data type) . If the RHS is a

legal arithemetic expression, its value is computed and the

20

result is assigned to the variable on the LHS. Otherwise,

the value of the RHS is directly assigned to the variable on

the LHS.

b. The PUT command

The PUT command consists of three parts; the device, an

optional line skip parameter and the data list. It outputs

newlines and the items specified in the data list to the

named device.

Valid devices are: "LST", the system line

printer; "CRT", the user's console screen and <FN> the name

of a disk file. The device name may ba followed by the word

"skip" (performed only once per-coramand) . Each occurrance

causes a newline character to be output. The data list

contains any combination of variables and strings (a string

consists of any characters contained within double quote

symbols " ") . The value of the variable and the actual

character string, minus the quote marks, will be output.

c. The GET Command

The GET command reads data from either the user's console or

from files stored on the user's disk. The device name

("CRT", <FN>) preceeds the receiving variables and indicates

which medium the user wishes to access for his data.

d. IF command

The IF command is used to logically select whether or not to

execute a particular set of statements. It has three compo-

nents; a logical expression, a THEN set of statements and an

optional ELSE set of statements. The value of the logical

expression is computed. If the expression result is true,

(value not equal 0), the THEN group of statements is

executed. Otherwise, the ELSE group of statements is

executed. If no ELSE group is included execution continues

after the end of the IF statement.

21

e. The CASE Command

The CASE command provides for the axecution of one or more

statements contained within at leas- one sublease. The

sublease is entered if it's corresponding case label matches

the value of the CASE statement parameter (variable or

integer) . If no sublease label matches the label of the

case value, the OTHERWISE set of statements is executed.

f. The LOOP command

The LOOP command consists of two parts; the loop iteration

parameter and the body of statements. All of the statements

included within the body of the loop are repeated a number

of times equal to the value of the loop iteration parameter.

If this value is less then or equal to 0, no statements are

executed.

g. The COMMENT Command

The COMMENT command performs no actual processing. Its

purpose is to allow the user to document his program and to

structure it in a logically understandable form. A comment

begins with a " ;" and, as all other RSCL statements, it

terminates with a " ;". Everything contained within these

two semicolons is ignored.

h. The LOCATE Command

The LOCATE Command is used to determine the current location

of the curscr. It returns the row and column number.

i. The POSITION Command

The POSITION Command is used to place the cursor at a

particular point (row and column position) on the screen.

22

j. The CREATE Command

The CREATE Command is used to generate a screen template.

It consists of two parts; the template identifier and from 1

to 24 line definitions.

The template identifier is a variable name used

to differentiate one template from another. The line defi-

nitions specify up to 80 fields per line and their associ-

ated attributes,

k. The DISPLAY Command

The DISPLAY Command causes a screen template and its associ-*

ated data to be output to the usar's console screen. It

consists of two parts; the template identifier and an

optional set of parameters.

The template identifier is a variable name

supplied by the CREATE command when it generated the temp-

late. The parameters include a line number, a field number

and text. The line and field numbars specify exactly where

on the template the* text has changed. These parameters are

returned by the display manager whenever ths data in a

particular field has changed.

23

17. SYSTEM DESIGN

A. DESIGN ASSUMPTIONS

7our major design assumptions wera made early in the design

phase. First, the integrated system is intended to operate

on either 8 or 1 6 bit microcomputers.

Second, the interfaces between the host operating

system, the command language and tha Display Manager are all

transparent to the user. The use of abstract interfaces

between these three modules enables the system to be readily

transportable to various microcomputers and operating

systems.

Third, memory utilization was not considered a prime

concern. The current trends in the state of the art towards

larger, cheaper memories lead us to believe that the differ-

ence of cne or two thousand bytes out of possibly one mega-

byte of storage is insignificant.

Fourth, processing speed was considered important,

although not paramount in the design. Since the system is

to be in continuous operation serving as the interface

between the user and the imbedded operating system, some

overhead is acceptable in exchange for the added capabili-

ties. This overhead should occur during the user's "think"

time rather than during actual processing.

B. DESIGN CRITERIA

Several criteria were considered during the design phase.

Clarity, simplicity, portability, maintenance and upward

compatibility were all key factors in designing the system.

The ultimate goal was to design a system that incorporated

the features outlined in Chapter two in a clear and concise

24

manner without overburdening the user. The limited number

of language commands is a direct attempt to demonstrate that

a command language can be simple and can function clearly

without an excessive number of nebulous commands. The

sample programs listed in the users manual demonstrate the

clarity of command usage.

The use of a high lsvel system programming language,
MC M

, serves to grant the desired portability. "C" compilers

are available on many micro, mini and mainframe systems.

Cross-compilers should be available for those systems which

do not have a "C" compiler.

The VAX computer was used for development of the proto-

type system. Its processing capabilities and myriad of

supporting functions along with its multiprogramming oper-

ating system and the availablity of a competent support

staff made it more suitable for development than a single

user micro system. The use of any features unique to the

VAX is purely accidental. To assure program portability,

only standard "C" programming features were used.

Extensions and system dependant features must be avoided in

any implementation.

Program maintenance is supported by the use of a higher

order programming language, functional decompostion,

abstract interfaces and structured programming techniques.

The utility of these factors was directly observed during

the debug and test phases of the prototype implementation.

In addition, the use of a higher order language, the

simplicity of the language design and the avoidance of

nonstatndard features ensures some degree of upward system

compatibility.

25

C. DESIGN DECISIONS

Three major design decisions were faced during the develop-

ment of the command language. First, which language should

be used to implement the system. Second, certain grammar,

structure and i up le mentation conventions had to be adopted

in order to ensure system integrity. Third, the interfaces

between the operating system, the Command Language module

and the Display Manager module was uncertain.

"C" was chosen to implement tha system because of its

inherant system design features. It was originally designed

as a system development tool. As such, it was felt to be

the most suitable language for our purposes.

In designing the RSCL grammar, standard conventions for

representing the lexical ordering and syntax of the language

were devised. These conventions were documented and are

included with the grammar itself in Appendix A. The use of

these standards was necessary in order to assure that we

both interpreted the grammar in a like way and that separate

modules, which were coded independently, would operate in a

like manner.

Prior to initiating the actual coding phase, several

sessions were held tc establish programming guidelines and

intermodule interfaces. Global variables, data types, error

handling, system diagnostic and integration standards were

defined. Any changes or variations from these established

guidelines were discussed and agreed upon before being

incorporated into the respective functions. This practice

proved to be invaluable daring the integration and test, of

the prototype system. No significant interfacing problems

were encountered.

The last major design decision concerned interfacing the

command language interpreter (CLI) with the resident oper-

ating system and with the Display Manager program. Neither

of these interfaces was built into the current system.

26

Instead, abstract interfaces were planned for each of

these. The operating system interface will be a function

call with a character string parameter. For example, to

change the name of a file, a rename function would exist.

This function would require two parameters; the old file

name and the new file name. The file names are expected to

be complete. Information such as the disk drive designator

should be included in the name whather or not the user

enters it. The rename function would then cause the oper-

ating system to change the name of the file in whatever ways

it feels is optimal. It is transparent and irrelevant to

the (CLI) , whether a separate command to the operating

system is generated or the data is sent to the BIOS or the

disk file directory is changed. In this way, a change in

the underlying operating system will require a change in

only these interface functions. It makes no difference to

the majority of the system whether a file name is changed by

an "iv" command as in VAX ONIX, an "ren" command as in CP/M,

an "r" command as in VMS, etc. The implementation of these

functions is currently the topic of a separate thesis at the

Naval Postgraguate School.

The interface to the Display Manager module was not

implemented because it was planned to use a pre-existing

program. A commercial product, called "Display Manager" is

available from Digital Research. This program does all that

we needed in the HSCL system. It also is capable of inter-

facing directly with a program written in the "C" language.

Rather than devote time to development of a new program with

similar capability, it was decided to purchase and use the

Digital Research Display Manager. Our efforts were spent

defining the display data which were of concern. This

information is included in the language grammar within the

"create" command. The actual commands telling the Display

Manager what to display are included in the grammar within

27

the "display" command. Coding of these functions was post-

poned until the program could be purchased. At that time

the actual interfacing parameters rsguired can be determined

and the functions can be written.

28

v - IMPLEHBHTATIOH

A. DATA ORGANIZATION

The language data organization is broken up into two parts,

local and global variables. Local variables are used within

each function to handle internal data transactions. Data

shared between two functions is passed globally. The global

variables are declared in a central file, "global. interp",

to maintain tight control over their assignment and use.

Using glcbal variables to transfer external data decreased

the system execution time, while making the functions

cleaner and easier to integrate. The design specifications

clearly define each global variable, its use and what func-

tions utilize it's values.

Comments are generously dispersad throughout each func-

tion to aid the user in understanding its purpose. A header

is appended to the beginning of eaoh function, listing the

other functions called and the global variables and

constants used within the function.

B. PROGRAM ORGANIZATION

Functional decomposition was used sxtensively throughout the

program. Three separate modules comprise the fully inte-

grated system. The O/S module is a set of functions which

defines the interface to the host's operating system. These

functions translate commands from the CLI to the native

language of the 0/S. Those commands that are not native to

the host will be software emulated, if possible.

The language interpreter modula has a dual function. It

interfaces with both the 0/S and display modules. Programs

generated either interactively or by batch mode are

29

processed through the language interpreter. Output from the

interpreter is a series of instructions to ons of the other

two modules.

The last link in the triad is the display module. Like

the O/S modula, it receives its data from the interpreter

through the interface commands. The display module takes

data stored in a file and transposes it onto one of the

formats generated by the create command.

C. RUNTIME ERROR CHECKING

A run time error handler is built into the system and is

activated when an invalid oommand ssguance is encountered by

the interpreter. All error messages are contained in a

single error function. When an error is detected the error

handler is called and prints a diagnostic message and ampli-

fying information. Depending on the severity of the error

either the program is terminated or control is returned to

the
#
calling function.

30

¥1. SYSTEM OPERATION

The RSCL is capable cf operating either in an interactive or

a batch mode. For batch mode operation, programs can be

written using any standard text editing program. The file

containing the source code must be called "RSCL".

At execution time, the CLI dstermines if a file exists

with the name "RSCL". If one is found, it is assumed to

contain the source statements. The CLI then executes in a

batch mode taking its input from the source file.

Otherwise, the CLI reads its instructions from the user's

console.

When operating in an interactive mode, the user must

still follow the complete format of the language structure.

That is, the program begins with the word "program", termi-

nates with the word "end. " and each statement terminates

with a ";".

31

fll. CONCLUSIONS AND HECOHMENDATIONS

The command language design and a prototype implementation,

have been completed. This design is now reviewed to deter-

mine which of our original goals have been met. or can be met

with further work and which, if any, were not found to be

feasible.

A. GOALS

The goal of this work was to design a command language which

runs on microprocessor based computer systems. The purpose

of the language was to allow rapid definition of a screen

oriented user interface. The language was to be simple,

easy to use and readily understandable. Maintainability and

portability across different machines and operating systems

were prime concerns. Processing efficiency was considered,

but only secondarily to the other factors.

B. PROBLEM AREAS

The RSCL is complete and workable as designed. Known

problem areas which are stated as constraints in the

language are not inherent problems. They can be eliminated

during future enhancements. The only area which we see as a

potential problem to the system design is related to the

Display Manager interface. The design in this area was

purposefully made generic via the principles of abstract

interfaces and information hiding. However, if the func-

tions required by the CLI are not available, some redesign

may be necessary. Because of our research in the area

before creating the design, we do not feel this is a major

concern. The CLI module should bs easily interfaced to the

other two major system modules when they become available.

32

C. FOTOBE WORK

In order to create a complete and deliverable product

further work is required in four arsas; the operating system

interface routines must be completad, enhancements must be

added to eliminate the constraints discussed in Chapter

three, the three main system modules must be integrated,

studies should be performed to iatermine user needs and

reactions.

The operating system interface routines are already

being developed under a separate thesis effort at the Naval

Postgraduate School. Assuming that a copy of the Display

Manager Program is obtained from Digital Research and that a

"C" compiler is available for the NPS microprocessor system,

the system enhancements and module integration can be accom-

plished under another thesis. Concurently with the system

integration, research should be performed to determine

sample presentation formats. They could then be created in

the RSCL.

33

APPENDIX A

COMMAND LANGUAGE 3RAHHAR

The convention used for describing the grammar of the

command language is described in table I.

TABLE I

Grammar Convention

SYMBOL MEANING

< > Used as delimiters for mstasymbols
in the grammar. Anything contained
within these brackets is defined
later in the grammar.

[] Used as delimiters surrounding
optional entries.

• * Used as delimiters surrounding
literal expressions in the grammar.
Anything within these symbols must
appear exactly as shown.

I Used as a logical OR.

: := Interpreted as "Defined as".

() Used to group expressions.

**N Used to designate a repetitive group.
Where "N" is the number of repetitions

Using this convention the Command Language Grammar is

defined as follows:

program ::= 'program 1 <identifier> <statements> 'end. 1

statements : := (<let statement> i <if statement
<puttstai:ement> <get statement>
<LOOP STATEMENT>

J
<CA3E_ST ATEMENT>

- I <dispL
[<STATEMENTS>]

<COMMl!NT> I <DISPLAY> | *CREATE>)

34

LET_STATEMENT

IF_STATEMENT :

PUT_STATEMENT

PUT_DEVICE

LIST

GET_STATEMENT

GET_DEVICE

ID_LIST

FNAME

LOO?_STATEMENr

CASE_STATEMENT

CASE NUM ::=

:= •LET* <IDENTIFIER> •=•
(<EXPRESSION>

» <IDENTIFIER> | <NUMBER> | <STRING>)

= 'IP' <L03 EXP> 'THEN* <STATEMENTS>
[•ELSE 1 <STATEMENTS>] » ENDIF 1

= 'POT' <PUT_DEVICE> [•SKIP*] <LIST>

= •CRT 1
| "LST 1

| <FNAME>
=

(<IDENTIFIER> | <STRING>) [<LIST>]
= 'GET 1 <GET_DEVICE> <ID_LIST>

= •CRT 1
| <FNAME>

= <IDENTIFIER> [<ID_LIST>]

= [<CHARACTER> •:•] <IDENTIFIER>
[••• <IDENTIFIER>]

:= 'LOOP* (<IDENTIFIER> | <NUMBER>)

<STATEMENTS> 'ENDLOOP'

:= •CASE* <IDENTIFIER> ':' <CASE MOM>
'OTHERWISE:' <STATEMENTS> 'SNHCASE'

(<NOMBER> | <IDENTIFIER>)
[<CASE_NUM>]

i . i <STATEMENTS>

COMMENT

IDENTIFIER

SUB_ID

EXPRESSION

SUB_EXP

TERM

LOG_EXP

SUB_LOG

LOG_TERM

SPACES

NUMBER

CHARACTER

s t <ANYTHING>

= <CHARACTER> [<SUB_ID>]

B ['-'
] (<CHARACTER> | <DIGIT>) [<SUB_ID>]

= • (' <TERM> [<ARITH_OPR> <SUB_EXP>] •)•

= <TERM> [<ARITH_OPR> <SUB_EXP>]

= <EXPRESSION> | <IDENriFIER> | <NOMBER>

= • (• <LOG_TERM> [<L03_OPR> <SUB_LOG>] ')'

= <LOG TERM> [<LOG OPR> (<SUB LOG>
| <LDG_EXP>)] "

= <LOG_EXP> | <IDENTIFIER> I
<NUMBER>

= • ' | • • <SPACES>

= <DIGIT> | <DIGIT> <NUMBER>

• A'
»H'
•0'
i V i

•c«
• j'
•q'
•x'

DIGIT = '0 •1 •

•3'

ARITH_OPR :•:= |

LOG OPR : := 'EQ •
|

•B'
•I'
ipi

»W»
•d'
•k«
•r»
• yl

•2'
•9'

-"
I

LT« I

•C
•J'
•Q'
•X'
•e'
•1'
•s»
•z«

i **

i GT i

i ;i; i

•D'
•K'
•R«
• Y i

•f
• m«

I
>?>

i

•L'
•S'
•Z«
• gi
'n 1

t F t

.Ml

'a'
•h'
•o'

•G'
* N

'

»TJ«
•b»
•i«

•NE'

|
«5» | »6» | *T

| 'LE 1
|

, GE t

35

LOG_FUNC :: = •AND' | •OR'

STRING ::= <ANYTHING> •

ANYTHING ::= (<DIGIT> 1 <C
1 <o

OTHERS ::=
|

ti , .
(

t , ,)
i.i

j
iii | i ?

i

•&•
I

•=• *%
-

1
•#•

1

DISPLAY ::= •DISPLAY 1 <IDEN

PARAMS ::= 1 (' [<LINE>]

[<TEXT>] '

LINE :: = NUMBER

FIELD ::= NUMBER

TEXT :: = ANYTHING

LOCATE ::= •LOCATE 1 <ROW>

POSITION ::= •POSIT 1 <ROW>

ROW ::= NUMBER

COL ::= NUMBER

CREATE ::= •CREATE 1 <IDEN

DEF_LINE ::= • DEF LINE 1 <NU
(<DEF_FIELD>*

DEF_FIELD : :•= «DEF_FIELD' <

ATTRIBUTES : :- • (• " <LENGTH
" <ACCESS
<FOREGR

' <UNDERL
<TYPE>]

| 'NOT 1
| 'CON'

i i

HARACTER>
J <ARITH 0PR>

THERS> [<ANYTHING?]

'
| '$' | '|

•

l l n l it I

»a« j •
#•

•<• •>•

TIFIER> [<PARAMS>]

•J
[<FIELD>] ','

<COL>

<COL>

TIFIER> <DEF LINE>**24 'END'

MBER> f '

80 I ^ nr
_ i <NUMBER>

BLANK •
) 'ENDLINE 1

• ;
•

IDENTIFIER> <ATTRIBUTES> •;'

] •,' [<VALUE>] • '

1 »,' [<BACKGROUND>] ',
UND>] ' ,' [<VIDE0>1 • ,

'

[<INTENSITY>]

>
>
OUND>]
INE>] •, »

)
.

r

LENGTH

VALUE

ACCESS

FOREGROUND

BACKGROUND

VIDEO :

UNDERLINE

INTENSITY

TYPE :

= NUMBER

= ANYTHING

= »R/0' | 'R/W

::= DIGIT

::= DIGIT

= 'NORMAL 1
| 'INVERSE

:= 'ON 1
j 'OFF'

:= •BRIGHT' | 'D

= • ALPHANUM' | •

IM'

NUMBER' | 'CHAR' | 'STRING'

36

APPENDIX B

R&S COMMAND LANGUAGE USER'S MANUAL

A. INTRODUCTION

The RSS Ccmmand Language (RSCL) is designed to create micro-

processor shell formats from within user designed software

programs. Programs written in the language will interface

with the display module to output data in the specified

screen format. Menus are utilized to facilitate program

entry and apprise users of available formatting options. The

language uses an interpreter, written in "C", to execute the

programs.

B. LEXICAL CONVENTIONS

There are seven types of tokens: identifiers, integers,

strings, arithmetic operators, logical operators, logical

functions and others. In general blanks, tabs, comments and

newlines are ignored except as they serve to separate

tokens. At least one of these characters is reguired to

separate otherwise adjacent identifiers. The language does

not incorporate any reserved words in the grammar. Each of

the RSCL statements is considered a keyword when used at the

beginning of a command sequence, however, since keywords are

not treated as reserved words they are allowed to be

assigned as identifiers latter in a command line. The semi-

colon acts as a statement terminator.

1 . TOKEN DESCRIPTIONS

Each word is scanned for inclusion in one of the seven iden-

tified token types. The tokens are then processed one at a

time through the CLI. The following subsections describe

the token formats in detail.

37

a. IDENTIFIERS

Identifiers may consist of alphanumeric characters and the

underscore symbol. The first character must be alphabetic.

It is optionally followed by characters, underscores or

digits. Upper or lower case alphabetic characters are

allowed tut are not distinguished. The standard convention

of not allowing an identifier to terminate with an under-

score applies. Identifiers have a maximum length of ten

characters and their value can be one of three types: char-

acter, string or integer.

BHF format:

IDENTIFIER : := <CHARACTER> <SUB_ID>

SUB_ID ::=* »_» (<CHARACTER> | <DIGIT>) <SUB_ID>

b. NUMBERS

Numbers are formed by conca tinating one or more digits onto

a digit. Only digits are used to form numbers. Numbers are

not re-definable data types.

BHF format:

NUMBER ::= <DIGIT> | <DIGIT> <NUMBER>

DIGIT ::= *0
'

I *2» |« 3«

|

'4 1 |« 5' |
• 6' |

' 7» | ' 8' |
•
9»

c. STRINGS

Strings are any ASCII print character (s) between double

quotation marks (" ") . The language reads "this is a

string" as a single string.

BHF format:

STRING ::= '
" , <ANYTHING>» •••

ANYTHING : := (<DIGIT>| <CHARACTER>

|

<ARITH OPR>| <OTHERS> <ANYTHING>

38

d. ARITHMETIC OPERATORS

Standard arithmetic operators i.e. " + ••, h-m
#

»•*", m/h ars

implemented within the language. Unary operations are not

currently supported by the language.

BHF format:

ARITH_OFR ::= »• | - | •*• |»/<

e. LOGICAL OPERATORS

Alphabetic type characters i.e. "EQ", "LT", "GT", "NE",

"GE" , "LE" are used to perform logical operations. The

first three equate to equals, less then, and greater then

respectively. The last three equate to not equal, greater

•hen or equal, and less then or equal. All expressions are

required to be parenthesized i.e. (A GE B) or (U LT 9).

BMP format:

LOGJDPR ::= EQ« | • LT 1
1 *GT | ' NE • | • GE ' |

• LE

f. LOGICAL FUNCTIONS

Logical functions also use alphabetic type characters i.e.

"AND", "OR", "NOT", "CON" to perform their functions. The

"AND", function returns true if the two arguments bracketing

the "AND" are both true. The "OR" function returns true if

either of the bracketing arguments is true. The "NOT" func-

tion logically complemnts its operand. The "30N" function

concatenates a string onto another string. Like the logical

operators, parentheses are required in logical expressions

i.e. ((Z GE T) AND (M LT W)) where Z, T, M, and 9 are vari-

ables or expressions which evaluate to comparible data

types.

BNF format:

LOG_FUNC ::= AND* | "OR 1 NOT <
| CON

•

39

g. OTHERS

The others token type is a collection of the remaining stan-

dard ASCII print character types i.e. " (" , '*)% "&", tt %n

"#", etc. These characters represent their normal meaning
except where their meaning is negated i.e. "GT" replaces ">"

sign in the grammar convention.

BHF foraat:

OTHERS ::= » • • |« (• | •) • | » | •
|

• s •
| • ?

•
| •$ | •

|
•

| 191
j

• #•
j
tg •

j
t3 i

i'X'i fi" r »i •<•
i
•>•

1 ». •!«,• 1
'

C. DECLARATIONS

The language does not provide for any variable pre-

declaration. New variables on the LHS or RHS, if reading in

data from the CRT (screen) or a file, will be assigned the

same data type as the recieved data automatically. Type

conversions are not performed in the language.

D. SYNTAX

The BNF (Backus Naur Form) syntax structure for the grammar

is provided in Appendix A.

E. PBCGRAH STRUCTURE

All programs written in the RSCL are comprised of three

parts; a header, statements to execute and a trailer.

Figure B. 1 shows the format of a simple program.

This sample demonstrates the overall program structure. The

first line, "program sample" is the program header. Note,

that it does not include a semicolon. A semicolon is a

statement terminator (a semicolon is required at the end of

every statement). The complete statement is "program test

<executatle statements> end.;".

uo

program sample

put crt skip "Enter a value for the loop count.":
get crt a;
loop a

if (a eq 2)
then

put crt "The value of a is " a:
else

get testfile.dat b ;

put crt skip "When a = 2, b = " b;
endif

;

I endloop;
I end.
I

I

Figure B. 1 Sample Command Language Program.

The second through twelfth lines are the executable state-

ments. They perform the actual processing. The trailer is

"end. ;".

The indentation and structured appearance is optional.

The CLI ignores blanks and carriage returns. Therefore,

multiple statements can be placed on a single line and a

single statemsnt can be split over several lines. Figure

B. 2 shows two legal ways to write the same statements.

Sample of combined lines .

let a = (b+1) ; put crt a;

Sai£le of line sp litt ing.

let
a= (b1)

; put crt
a;

Figure B- 2 Example of Two Line Formatting Techniques.

41

While no one should write a program in the second

format, if the code needs to be packed, any format is accep-

table so long as variable names are not split between lines.

In that case they will be treated as two separate variables.

Now, knowing the general structure of an RSCL program,

each of the ten individual statements are discussed in the

following sections. Each statement's function and format,

the constraints on its use and the error messages which can

occur with their probable cause(s) are described.

1 . The LET Stat emen t

The LET statement is used to perform arithmetic operations

and to assign values to variables. When performing arith-

metic, the expression on the RHS must be contained within

parenthesis. The value of that expression will then be

assigned to the variable on the LHS. If no arithmetic is

required, the RHS may contain either an integer, a string or

a variable. In that case, either the integer value, the

actual string or the value of the variable will be assigned

to the variable on the LHS.

If the variable on the LHS is not defined, it is

dynamically defined according to the type and value of the

RHS. If the variable(s) on the 3HS are not defined, an

error message is printed. If both variables are defined,

their types are compared to ensure that the assignment is

correct.

a. Format

A LET statement must fce in the form:

•let* <identifier> » (<expression> | <identifier>

| <number> | <string>)

Where the word "LET" is the keyword and must be the first

word in the statement. "LET" is followed by an identifier

which is treated as the LHS of the statement and will be the

42

recipient of the assignment. Next, the equals sign, " = ", is

expected. This is used to separata the LHS from the RHS and

to show the direction of assignment. It should not be

confused with the standard relational operator " = " which

means equality. (In RSCL equality is represented by the

string "eg") . The RHS may contain only one of either an

expression, an identifier, a number or a string. Upon

execution of the let statement, the value of the RHS is

assigned to the variable on the LHS.

The expression on the RHS may be a valid arith-

matic expression containing variables and the arithmetic

operators of "", »•-•», •»*« and "/". These operators hold

their standard meaning of addition, subtraction, multiplica-

tion and division. The precedence of operations may be

either implied or explicitly declared by the use of paren-

theses. The implied precedence is "*" equals "/" and "+"

equals "-". While "*" and "/" are the higher precedence and

are always performed before "" or »•-". Operations of equal

precedence are performed left to right. Figure B. 3 illus-

trates the LET statement format.

b. Error Types

The error messages associated with the LET statement are:

MESSAGE:

AN IDENTIFIER was expected, but ssss was found

at 1111.

EXPLANATION:

"ssss" is the token that was found prior to the

point "1111" in the input line. Check the syntax ,of the

statement containing this line.

MESSAGE:

= was expected, but ssss was found at 1111.

43

EXPLAHATIOH:

"ssss" is the token that was found prior to the

point "1111 in the input line. An "=" was expected desig-

nating the direction of the valua assignment in the let

statement.

MESSAGE:

AN ARITHMETIC EXPRESSION was expected, but ssss

was found at 1111.

EXPLAHATIOH:

"ssss" is the token that was found prior to the

point "1111" in the input line. The RHS of the let state-

ment did not contain a valid arithmetic expression. Most

likely a matching parenthesis was omitted.

HESSAGE:

AN ARITHMETIC OPERATOR was expected, but ssss

was found at 1111.

EXPLAHATION:

"ssss" is the token that was found prior to tha

point "1111" in the input line. Tha RHS of the LET state-

ment did not contain a valid arithmetic operator between two

identifiers.

HESSAGE:

Undefined identifier, ssss at pppp in line: 1111

EXPLAHATION:

"ssss" is the token that was found prior to the

point "pppp" in the input line "1111". An identifier in the

RHS of the let statement did not have a value. All identi-

fiers must be set before they can be referenced.

HESSAGE:

Data type mismatch. A string type was expected

at pppp in line: 1111

EXPLAHATIOH:

The LHS of the LET statement was of type string

but the RHS was not.

44

let a = 7;

Assigns the integer value 7 to the variable
"a". If "a" .is undefined it will also dynamically
declare var^aDle "a" type "I" for integer.

let a = b;

Assigns the value cf "b" to the variable "a".
If "d" does not have a value then an error is
called. If both "a" and "b" have values then
a type check is made. Otherwise, "a" is
dynamically assigned the data type of "b".

let a =
((b c) * 7) ;

Assigns to the variable "a" the rssulting value of
the RHS expression. If "a" is an undefined variable
then it will dynamically receive the same data
type as the expression result or if "a" is defined
the LHS and RHS types are comparsd.

let a = "this is a test";

Assigns the string, "this is a test", to the
variable "a". If "a" is undefined then it will be
dynamically assigned data type "S" in the symbol
table or variable "a" is compared for data type
"S" string.

Figure B.3 SAMPLE LET STATEHEHTS.

c. Osage Constraints

A maximum of 20 operations may be nested in the arithmetic

expression. The type checking is performed based on the

type of the right-most variable in the RHS.

2 . The GE T Stat ement

The GET statement is used to read data into the program from

some external device and assign that data value to a program

variable.

a. Format

A GET statement must be in the form:

•get 1 <device> <list>

45

Where the word "GET" is the keyword and must be

the first word in the statement. "Get" is followed by a

device. This device may be eithsr "CRT" for the user's

console or the name of a file. Anything which is net "CRT"

is considered a file. The name of the file may optionally

be prefaced by a disk drive designator and/or suffixed by a

file type. The total file name follows the file naming

conventions established for the CP/M operating system.

Following the device is a list of identifiers

which will receive the values as read from the input device.

If the identifiers are already defined, the data will be

read according to the defined type. Otherwise, the identi-

fier's type will be set depending on the type of the data

which is read. Figure B. 4 illustrates the GET statement

format.

i

get CRT a (b,c. . .) ;

Reads the next terminal input and assigns it to
the variable "a". If the variabls "a" is undefined
it will dynamically assign the input's data type
to "a". Otherwise, it will perform a type check
on "a". More then one input can be read from the
terminal during a get statement. Type checking
is done on each receiving variable.

get <FN> a (b,c. . .)

;

Opens the designated data file <PN> and reads the
data in sequential order. The receiving variable (s)
are either dynamically assigned the input's data
type (undeclared) or a type check is performed.

Figure B.4 SAMPLE GET STATEHEHTS.

46

b. Error Types

The error messages associated with the GET statement are:

BESS AGE:

DEVICE • CRT* or a file name was expected, but

ssss was found at 1111.

EXPLANATION:

"ssss" is the token that was found prior to the

point "1111" in the input line. The word 'get* must be

followed by the name of the device from which to read the

data

.

HESSAGE:

Filename — (<FN> [.<FT>]) -- was expected, but

ssss was found at 1111.

EXPLAHATION:

"ssss" is the token that was found prior to the

point "1111" in the input line. A file name may be up to 8

characters loag and optionally prefaced by a drive desig-

nator (one character followed by a colon) .

Filetype — (<F N> [. <FT>]) — was expected, but

ssss was found at 1111.

EXPLANATION:

"ssss" is the token that was found prior to the

point "1111" in the input line. k file type may be up to 3

characters long and must be prefaced by a period. A file

type only appears after a valid fila name.

HESSAGE:

Unable to open file - check <FN> is capitalized

EXPLAHATION:

The file designated in the GET statement does

not exist. Check the spelling of the file name. Be sure to

watch for discrepancies in capitalization.

47

HESSAGE:

Cannot read from the list device at pppp in

line: 1111

EXPLANATION:

"PPPP" is the point in the input line "1111" at

which the error occurred. A devica type of "LSI" is illegal

for the GET statement.

c. Usage Constraints

There are no usage constraints in the GET statement.

3 - The PUT Statement

The POT statement is used to ouput data from a program vari-

able to some external device.

a. Format

A PUT statement must be in the form:

•put* <device> ['skip 1

] <list>

Where the word "PUT" is the keyword and must be the first

word in the statement. "PUT" is followed by a device. This

device may be either "CRT" for the user's console, "LST" for

the line printer or the name of a file. Anything which is

not "CRT" or "LST" is considered a. file. The name of the

file may optionally be prefaced by a disk drive designator

and/or suffixed by a file type. Tha total file name follows

the file naming conventions established for the CP/M oper-

ating system.

The device is optionally followed by the word

•skip'. If included, this will cause a newline control code

to be transmitted to the output device. Note, the skip is

only done once per statement.

Next is a list of identifiers and/or character

strings. Figure B.5 illustrates tha PUT statement format.

48

put CRT a (b,c. .) ;

Displays on the CRT (screen) the value of the
variable "a". Multiple displays (b,c.) are allowed

put CRT SKIP (a,b...) ;

Skips a line prior to displaying the variable data.
The skip is performed only once prior to displayingmg the variable (s) value (s).

put LST a (b,c. . .) ;

Toggles the printer on (providing it is turned on)
and transfers the variable (s) value (s) to it.

put LST <FN>;

Toggles the printer on (providing it is turned on)
ana transfers the data contained in the designated
file <FN>.

put <FN> a (b f c. . .)

;

Opens the designated file <FN> and stores the
variable (s> value in the file. The file <FN> is
automatically closed upon statemant termination.

Figure B.5 SABPLE POT STATEMENTS.

b. Error Types

The error messages associated with the PUT statement are:

HESSAGE:

DEVICE "CRT" or "LST" or a file name was

expected, but ssss was found at 1111.

EZPLAHATIOH:

"ssss" is the token that was found prior to the

point "1111" in the input line. The word 'put* must be

followed by the name of the devica on which the data is to

be written.

HESSAGE:

Filename — (<FN> [. <FT>]) -- was expected, but

ssss was found at 1111.

49

EXPLANATION:

"ssss" is the token that was found prior to the

point "1111" in the input line. A file name may be up to 8

characters long and optionally prefaced by a drive desig-

nator (one letter followed by a colon).

HISSAGE:

Filetype ~ (<PN> [.<FT>]) -- was expected, but

ssss was found at 1111.

EXPLANATION:

"ssss" is the token that was found prior to the

point "1111" in the input line. A file type may be up to 3

characters long and must be prefaced by a period. A file

type only appears after a valid file name.

MESSAGE:

Undefined identifier, ssss at pppp in line: 1111

EXPLANATION:

"ssss" is the token that was found prior to the

point "pppp" in the input line "1111". A value must be

defined for any variable before it can be output. Be sure

that all designated variables are set to some value before

they are referenced.

c. Usage Constraints

If the data is being put to a file, that file is opened in

append mode. Therefore, if a new file is desired, the user

must ensure that any previous file with that name is erased

prior to executing the PUT statement.

*• The IF Sta t ement

The IF statement executes a set of statements based on the

logical value of the IF clause. If this value is true (not

0) , the THEN group of statements is executed. If the IF

clause value is false (0) , the ELSE group of statements is

executed. The ELSE group is optional. If it does not exist

50

and the IF clause value is false, the entire IF statement is

ignored.

a . Fo r m at

An IF statement must be of the form:

•if 1 <logical expression> •then 1 <statements>

Where the word "IF" is the keyword and must be tha first

word in the statement. WIFM is followed by a logical

expression. This expression must ba contained within paren-

theses and may be any valid combination of logical operators

(eq, It, gt , ne, le, ge) , logical functions (and, or, not)

variables and numbers. Precedence of operations is deter-

mined solely on the bases of parenthetical grouping.

The logical expression must be followed by the

word "THEN" and the group of statements which will be

executed if the logical expression is true. This group of

statements terminates either with the word "ELSE" or the

word "ENDIF".

If the logical expression is false, the THEN

group of statements is skipped and the ELSE group is

executed (if it exists) . The IF statement terminates upon

detection of the word "ENDIF;". Figure B.6, illustrates the

IF statement format.

b. Error Types

The error messages associated with the IF statement are:

MESSAGE:

An IF statement must have a logical expression

at pppp in line: 1111

EXPLAHATIGN:

"pppp" is the point in the input line "1111" at

which a logical expression was expected. Check for matching

parentheses.

51

if <logical expression> then
<statements>

else
<statements>

endif

;

The logical expression portion is tasted first. If
true, the statements in the THEN portion (any RSCL
statements} are executed in order. The statements
contained in the ELSE (optional) portion are
executed only when the IF condition returns false.
The IF statement is terminated by an ENDIF.

i

Figure B.6 SAMPLE IF STATEMENT.

MESSAGE:

THEN was expected but ssss was found at 1111.

EXPLANATION:

"ssss" is the token that was found prior to the

point "pppp". The THEN clause is mandatory in an IF state-

ment. Be sure that all designated variables are set before

they are referenced.

MESSAGE:

ENDIF was expected but ssss was found at 1111.

EXPLANATION:

"ssss" is the token that was found prior to the

point "pppp". An IF statement must terminate with the word

"ENDIF".

c. Osage Constraints

There are no usage constraints for an IF statement.

5- The LOOP Sta tement

The LOOP statement repeats a set of statements a specified

number of times. Any number of repetitions may be specified

via either a number constant or a variable entry.

52

a . Fo r m at

A LOOP statement must be in the form:

•loop 1
(<identifier> | <number>) <statements> 'endloop; •

Where the word "LOOP" is the keyword and must be the first

word in the statement. "LOOP" is followed by either a

number or an identifier which gives the number of times the

loop is to be executed. The loop checks this value before

execution. If the loop value is <= 0, the statements in the

loop are skipped. Otherwise, the inner statements are

repeated until the loop counter reaches 0. The loop counter

cannot be changed once the loop has begun executing. Even

if the identifer used for the loop counter is altered, the

loop will not be affected. Figure B.7 illustrates the LOOP

statement format.

loop a
<statements>

endloop;

The variable "a" contains the number of
iterations that the statements contained
within the loop will be executed. Any
combination of valid RSCL statements
is allowed.

locp 7
<stat ements>

endloop;

The only difference in this statement is the loop
counter is in integer form vice identifier form.
The loop execution sequence is not altered.

Figure B.7 SABPLE LOOP STATEHEHT.

53

b. Error Types

The error messages associated with the LOOP statement are:

MESSAGE:

Undefined identifier, ssss at pppp in line: 111!

EXPLANATION:

"ssss" is the token that was found prior to the

point "pppp" in the input line "1111". A value must be

defined for any variable before it can be usad as a loop

counter. Be sure that all designated variables are set

before they are referenced.

HESSAGE:

An integer or variable loop count was expected

but ssss was found at 1111

EXPLANATION:

"ssss" is the token that was found prior to the

point "1111", A loop counter can only be an integer or an

identifier.

c. Usage Constraints

Nested loops cannot be used.

6 • Tfre CA SE Sta tement

The CASE statement executes a set of statements based upon

the case variable. If one of the cases matches the value of

the case variable then that set of statements is executed.

If none match, then the OTHERWISE set of statements is

executed.

a . Fo r m at

The CASE statement must be in the form:

•case' <identifier> ': ' case_num

•otherwise:' <statements> 'endcase'

54

Where the word "CASE" is the keyword and must be the first

word in the statement. "Case" is followed by an identifier

and a colon. This is the case variable. Each of the cases

that follow begin with either a number or an identifier

followed by a colon. This value is compared with the value

of the case variable. If they are equal, then all the

statements in the case element (up to the next case number)

are executed. If no case number matches the case variable

then the statements in the otherwise clause are executed.

The CASE statsment is terminated with the word "ENDCASE" and

a semicolon. Figure B.8 illustrates the CASE statement

format.

case a:

i

b: <statements>
c: <statements>
6: <statements>
otherwise

endcase;

The case statement uses a variable or an intecler
to indicate which case slement will be invokec
The "a" represents
element index. If

the data type of the case
none of the case elements are

invoiced then the otherwise case slement is
executed, any vali d RSCL statement is allowed.

Figure B.8 SAMPLE CASE STATEMENT.

b. Error Types

The error messages associated with the CASE statement are:

MESSAGE:

Undefined identifier, ssss at pppp in line: 1111

EXPLAHATION:

"ssss" is the token that was found prior to the

point "pppp" in the input line "1111". A value must be

55

defined for any variable before it can be used as a loop

counter. Be sure that all designated varialbes are set

before they are referenced.

MESSAGE:

— : — was expected but ssss was found at pppp.

EXPLAHATION:

"ssss" is the token that was found prior to the

point "pppp". A case variable must be followed by a colon.

MESSAGE:

OTHERWISE was expected but ssss was found at

pppp.

EXPLAHATICH:

"ssss" is the token that was found prior to the

point "pppp". A CASE statement must include an OTHERWISE

clause to handle the event when no labled case value was

matched.

c. Usage Constraints

There are no usage constraints for the case statements.

7. The CREATE State ment

The create function was not coded because the interface

between the CLI and display modules is unknown. The create

module was designed to interface with a commercial product.

The product is still enroute to the school. When coded the

create module will assign attribute values to specified

fields. The resulting template is then utilized for data

display through the display module.

8 - 2M DISPLAY Statement

The display function was intended to be an external commer-

cial product purchased from a local vendor. Unfortunately,

the supply system was uncooperative and the product never

arrived. As designed, display manager takes the output data

56

and transposes it onto the requested screen shell created in

the create module.

F. GENERAL ERROR HANDLING

The system and syntax error handler messages are formatted

as follows:

{"**** SYNTAX or SYSTEM ERROR ***••)

(ERROR MESSAGE(S))

MESSAGE:

Symbol table exceeded.

EXPLANATION:

The maximum length of the symbol table was exceeded, too

many variables in the program.

BESSAGES:

Premature end of input encountered.

EXPLANATION:

The program ended without a proper terminator i.e. END.

Program could be in the middle of a command when the input

terminates.

BESSAGES:

Unrecognized character, ssss in line: 1111.

EXPLANATION:

"ssss", a non ASCII type token, was encountered prior to

the point "1111" in the input line.

MESSAGES:

String length exceeds (132) in line 1111

EXPLANATION:

The token prior to the point "1111" in the input line

exceeds the maximum sring length of (132).

BESSAGES:

PROGRAM was expected, but ssss was found at 1111.

57

EXPLAHATION:

Program's must start with the constant "PROGRAM"

followed by the program name.

BBSSAGES:

AN IDENTIFIER was expected, bat ssss was found at line

1111.

EXPLA1ATI0H:

This could have several meanings. LHS's of let state-

ments require an identifier (variable). Data file reads also

require a variable to receive transfsred data.

MESSAGES:

END. was expected, but ssss was found at line 1111.

EXPLAHATIOH:

An input following a statement must be either another

statement or an (END.).

MESSAGES:

No legal Command Language statement was found prior to

the point 1111 in the input line.

EXPLAHATIGNS:

This error message is only invoked during the first

statement following the program nams.

MESSAGES:

expected at ssss in line 1111.

EXPLAHATION:

Semicolons terminate all statements. Check the statement

at the indicated line.

58

AfiEEiiCIX C
PPCGPAM SOURCE CCCE LISTING

/* R & S Command Lanauaqe

* Last update: 22 Sep 1993

* CONSTANT DEFINITIONS *

*/
•define debuq
•define debuqcase
•define debudget
•define debuaif
•define debuglet
•define debugloop
•define debuaDut
define debuastate
define false
•define true 1

•define maxsym 25
•define devsiz 15
•define linesiz 132
•define looo.lst.siz 10
•define strinqsiz 132
• define syrrsiz 10
•define oDtorslz 20
•define oprandsiz 40
•define EQFILE ' *

•define NEWLINE #

•define id. token 1

•define str. token 2

•define int.token 3

•define arith.op. token 4

•define loq. op. token 5

•define loo. func. token 6

•define other. token 7

* GLOBAL VARIABLE DEFINITIONS *

*/

FILE *outout, *input, *source, *locp.file;
char LOOP.FILEC20] , *loopptr; /* file name for loop statements*/
char sav.dev [devsiz] ; /* device name for put & get */
char put.dev Cdevsiz] ; /* device name for put statement*/
char qet.dev [devsiz] ? /* device name for get statement*/
char symtyoe; /* type of symbol I or C */
char symid Csymsiz] , *idptr; /* actual symbol char strino */
char string Cstringsiz] , *sptr: /* character string */
char token Csymsiz] , *tptr? /* actual token char string */
char line [linesiz] , *lptr; /* current input line */
char looo. 1st [loop. 1st. siz] Clinesiz] ;/*statements repeated in loop*/

59

int loop-cnt;

Int token- type J

int symval;
Int n u m s v m,

;

Int exp.result;
Int opr-value;

struct <

char idtsymsiz], *sidptr;
Int value;
char type;

} symbol Cmaxsym] , *symptr

/* loop statement counter, used */

/* by getllne to rereat statemnt*/
/* type of token */

/* value of symbol */

/* number of symbols active */
/* result of arith expressions »

/

/* precedence values of arith-oc*/

/* symbol table
/* symbol name
/* symbol value
/* symbol tyce CI or C)

*/
»/
*/
*/

60

/*

*

*

*

#1
II
ma
(

This is the main routine for the Command Languaae Intercreter.
It calls "statements" to process all other statements.
If nrain completes successfully the intercreter exits.

Functions used:Functions useo: error (

1

1/12/14/51) , next, statements
Global used? token, token. type
Constants used: id. token

Author: Dennis J. Ritaldato
Last update: 22 Sep 1983

/

nclude <stdio,h>
nclude "global. interp"
in C)

LOOP-FILFCO] s "";

strcpy(LOOP.FILE,"LCCPZZZZ") ;

locc-cnt = 0;
nurrsym = 0;

source = f ooenC "RSCL" , "r")

;

nextO;
if C strcmp(token, "PRGGRAM"))

error (11);
next ()

:

if (token. type != id. token)

error (12);
nextn :

if C ! statements^)

error (51);
If (strcmp(token,"END"))

error (14);
next ()

;

if (tokenCO) i= ',')

error (14);
exito;

/* init loop counter */

/* init symbol table */

/* open source file for */

/* command language program */

61

/*
* Statements checks the token tc determine if It is a reserveo word
* indicating the beginning of a ccnrrrand language statement.
* If found the correscondino functionis called to process the
* statement. Then statement calls itself to look for rrore statements
* and returns true.
* Functions used: case.statement , create* display, error(53),
* if. statement , let. statement , loop. statement , next,
* put. statement get. statement ,

* Globals used: token
* Constants used: none
*

* Author: Dennis J. Pitaldato
* Last update: 19 Sec 1983
*/

include <stdio.h>
^include "global. interp"
statements C)

{

«if debuastate
printf ("Entered statements with token of %s,Q, token);
tendif

if (IstrcmpCtoken, "LET"))

< nexto?
let.statement ()

;

>

else if C IstrcmpCtoken, "IF"))

< nextC);
if.statementC)

;

>

else if (IstrcmpCtoken, "PUT"))

< nextC);
cut. statement ()

;

>

else if (IstrcmpCtoken, "GET"))

< nextO;
get. statement ()

;

>

else if (IstrcmpCtoken, "LOCP"))

< n e x t ()

;

loop. statement C)

?

>

else if C IstrcmpCtoken, "CASE"))

< nextC);
case.statementC) *

>

else if C IstrcmpCtoken, ";"))

< nextC) ;

#if debug
printfC" comment found. 0);
#endif

while C strcmpCtoken, " ;
"))

62

next C)

?

>

else if (IstrcrreCtoKen, "DISPLAY"))

< nextO;
displayO ;

)

else if (IstrcirpCtoken, "CPEATE"))

< next C)

;

createC)

;

>

else
return(false)

;

if (token. CO] = •%•
)

error (53)

;

nextC)

;

statementsO ;

return (true);

/* bvpass ; */

63

The scanner scans the Input strearr for tokens which are either:
identifiers
integers
strings
logical ops
arith ops
logical funcs
others

alpha ralphanunr I .
digit : integers
anything except ;

EQ I LT I GT I NE I LE I GE
* I - I I /

AND I OR I NCT I CON
any other ASCII character

.nclude <ctyoe.h>

.nclude <stdio.h>
include "alcbai.interp"

next C)

<

int i = 0;

tptr = token;
*tptr = null;
token. tyre = 0;

/* if end of line
if (C*lPtr 3= NULL) II (*lptr s= NEwLlNE))

getlineO; /* a«t new line
while ((*lptr == ' ') II C ! lsascii (*lptr)))/* skip blanks

*/
if C C*lPtr == NULL) II (*lctr == NEwLINE)) /* if end of line */

getlineO; /* set new line

else
++lptr;

>

if (isalpha(*lptr)) /• is token an identifier? */

< for (i = 0; isalpha(*lptr) I I isdigit C*lptr) II (*lptr == '-');)

if (i + + < syrosiz)

tptr+ = upperC lptr++);

*tptr = NULL;
if C ilog.oprO && Uog.funcO)

token. type = id. token;
return;

>

else if (isdigitC*lptr)) /* is token an integer? */

< while C isdigitC*lctr))

*tptr++ = *lptr+*;

64

*tptr a NULL;
token. tyoe a int-token;
return;

>

switch (*lptr) {

case "":
sptr = string;
token. type s str.token;
lptr;
for C 1=0 : C*iptr != '"'); + «-iptr)
< if C *lptr s= NULL)

getlinet) ;

If (i+* < strirgsiz)
*sptr++ = *lptr;

else
error C5) ;

>

lptr;
*sptr = null;
return;

case ' + ': case '-':
oor.value a 1;
token. tvDe a arith. op. token;
*tptr++ = *lptr++;
*tctr = NULL;
return;

case ***: case V:
ocr.value a 2;
token. tyoe a arith. op. token;
*tctr++
*tctr
return?

case '(

/* is token a char string? */

/* if end of line
/* get new lire

*/
*/

/* bypass second */

/* is token an arithmetic op?*/

= *lptr++;
a null;

case
case
case
case
case
case

* i

A

case
case
case
case
case
case
case

token. tyoe a

*tptr++ a *lptr++;
*totr a null;
return;

default :

/*error(4);*/
ftf debug
printf("--Unrecognized
*endif

*lptr++:
next () ;

return;
> /* end switch */

case 'i

case ':

case '#

case '&

case ',

case 'I

case "
other-token;

case
case
case
case
case
case

's
m

'\

/*is token another symbol?*/

char %c with value %d found. ,*lptr , *lptr) ;

65

/* «nd next */

66

Getline reads the next lire either from the incut stream
if the loop counter , "loop. crt" is or from the loop statement
list, "looD.lst" if the loop counter is or^ater t h an 0. It

decrements the loop counter each time a line is read.
Each line read, regardless of source is placed into an array of

characters called "line".
If an ECFILE is encountered an error message is printed out and
the orogram terminates.
Otherwise, the line pointer is reset to the beainning of the
line and the function returns.

Functions used: errorC3)
Glcbals used: line, lptr, locp.cnt, loop. list, looc.lst.cnt ,

loop. 1st. ptr
Constants used: arith. on. token , id. token, int. token,

lcg.func. token

Author: Dennis Ritaldato
Last update: 22 Sep 1983

tlineC)

int I;

/* begin getline */

for Ci = 0; i < linesiz; i + *)

lined] s NULL;
/ clear line buffer */

if Cloop.cnt > 0) /* read from the loop list? */

{

if (fgetsCline, linesiz, loco. file) == EOFILE)

< fcloseClooc.f lie) ;

if (--loop.cnt >)

< looD.file = fopen (LOOP. FILE, "r");
fgetsCline, linesiz, lccp. file);

>

>

lptr = line;
return;

)

else if (source 1= NULL)

{ ifC fgetsCline, linesiz, source) as EOFILE)/*read from file RSCL*/

errorC3) ;

*if debug
printf C"--Source line read.O);
tendif

}

else
< if C getsCline) == EOFILE)

error C3)

;

*lf debug
printf c

M --CRT line read.O);

/* read from the terminal */

67

#endif
}

•if debug
printf ("--The new lire Is: %sO,line);
#erdif

lptr = line;
return;

> /* end getllne */

68

*

*

*

*

up

<

Upcer converts a lower case ASCII character to upper case ASCII.
Any characters which are net lower case ASCII are ignored.

Author; Dennis J, Ritaldato
Last update: 14 Sep 1983

/

per Cc)
char *c;

if (C'a' <= *c) && C*c <s

*c = *c 'A' - 'a';
return(*c) :

'z')) /* if lowercase */
/* convert to uppercase*/

69

Loa.opr examines the current token to determine if It is a

logical operator.
If so, it sets the token. type appropriately .

Author: Dennis J, Ritaldato
Last update: 15 Sep 1983

/* begin log.opr

*

*

*

*

*/

loo-opr CD

{

if C strlenCtoken) != 2)

returnCf alse) ;

tptr = token;
switchC*totr) <

case 'E':
if (*++tptr i= 'Q')

returnCf alse) ;

break;
case 'N'j

if C*++tptr i= 'E')
return(false) ;

break;
case 'G': case 'I*:

if C C**+tptr != 'T') &&
returnCf alse) ;

break;
default:

returnCfalse) ;

}

token. type = log.op-token;
returnCtrue) ;

*/

C*++tptr 1 = *E #
))

/* end log.opr */

70

*

*

*/

lOO.f UncC)

i

if (Cistrewp (token, "AND")] II

I I Cistrc*pCtoken,"NOT")) I I

< token. type = log.f unc. token?
return Ctrue) ?

>

return(false) ;

Lcg-func examines the current token to determine if it is a

logical function operator.
If so, it sets the token. tyce appropriately.

Author: Dennis J. Ritaldato
Last update; 14 Sep 1983

/* begin loa.func

ClstrcmpCtoken,"CR"))
(!strc*p(token,"CCN") J J

*/

/* end log.func */

71

This procedure adds a new symbol to the symbol table.
Increments numsym
creates a new symbol table entry with the values contained
symid, symval and symtype
return
Author: Dennis J. Ritaldato
Last update: 13 Sep 1983

<stdio.h>
"global. interp"

*

*

*

*

*

include
include
addsymC)
<

int i;

if (numsym. > maxsym)
e r r o r (2)

;

symptr = Ssymool Cnumsym*+] ;

for Ci=0; symid[i]i=' '; ++i]
symptr -> idCi] = symidCi];
symDtr -> value = symvai;
symctr -> type = symtype;

•if debug
printf CADDSYM entered. Numsym
•endif

return;
>

in

s %d0, numsym);

72

*

*

•i
«i
se
<

TMs procedure assigns the value contained in symval to the
symbol Indicated by symptr.
Author: Dennis J. Ritaldato
Last update: 13 Sep 1983

/

nclude <stdio.h>
rclude "global . interp"
tvalueC)

syrrptr -> value = syrcval;
return;

73

LOOKUP searches the symbol table for a match on symid and
symbol. id. If found,

set symptr, symval and symtype from the contents of the
symbol table, return true

else
symptr, symval and symtype remain unchanqed
returns false

Author: Dennis J. Rtialdato
Last update: 13 Sep 1983

/*

*

*

*

*

*

*/

tinclude <stdio.h>
tinclude "global. interp"
lockupC)

<

int 1;
for Csymptr = SsymbolCO); symptr <= Csympol numsym); ++symptr)

for CirO; symptr->idC13 == symidCi]; +*i)
if CsvmidCi] s= ' ») <

symval = symptr->value;
symtype a symptr->tyce;
return (true); >

return (false);
>

74

This function assignes values to variables. The LHS (left hand side)
variable must be an identifier. The only exception is when a string
is assigned then the Lhs variable is the global array string. RHS's
can be either an expression, inteoer or a declared identifier with
a value of the identifier stored in the symbol table. Expressions.
of any length are accented. Unary minus operations are not
suprorted in this version.

Functions used: addsym,error(12/18/55/57) , expression, lookup, next
setvalue

Globals used: exp. result, symid, symtyoe, symval, token, token. type
Constants used: id. token, int. token

Author: David J. Snrania
Last Update 22 Sec 83

Unclude <stdio.h>
include "global . interp"

/* Link standard I/C */
/* link all program constants */

char oDerator Coptorsizl ;

char savetype;
int operand Coprandsiz] ;

irt a,b ,m,n, marker , last. prec;

/* Declare let. statement variables */

let. statement C)

<

char savetoken Csymsiz] ;

int sav.value, addf lag;

/* Entering let statement
/* Declare local variables

*/
*/

•if debug
print f ("LET.STATFMENT entered.O);
*endif

/<*****?************* EVALUATE LEFT HAND SIDE ************************/

if (token. type 1= id-token)
<

error (12);
return;

>

else
strcpy (savetoken, token);

next ();
if (strcmp(token,"3") == 0)

next ()

:

else
<

error (18)

;

return;
}

/* Check for identifier

/* Error token not identifier

/* Save token name

/ Check for s token

/* Missing * — * operator

*/

*/

*/

*/

*/

75

/************************ RHS CHECK J********************************/
/*
* The expression function first determines if the RHS is an
* expression. If so, then it evaluates the expression and
* returns the result to exp. result, Error checkino is cerfcrmed
* throuhgout the function,
*/

if (expression ())
sav. value = exp. result;

else
if (token. type ss id. token)

/* Check for 2nd arq = expression */
/* Exp result saved */

<

strcpy(symid, token);
if (lookup ())

{

sav.value s symval;
savetype s symtyce;

}

else
error (55);

next ()

;

/* Load symid for lookup

/* Save variable value
/* Save variable type

*/

*/

/» Variable not in symbol table */

>

else
if (token.type » int. token)

<

savetype = #
I

#
;

sav.value a atoi(token); /* Sawe integer value
next ();

>

*/

else
if (token-type == str. token)

{

symtyoe a 's #
;

next ();
strcoy(symid,savetoken);
if (! lockup ())

<

symval s 0;
addsym ();
return;

>

if (symtype == 'S')
return;

error (57);
return;

)

else
<

error(24) ;

return;
>

/* Not exp, strino, id, int */

76

/* * ********************** STRCPY CHECK ******************************/

strcpy (symid,savetoken) ; /* Lead symid for lookup */

if ClooKuo CD)
if (savetype ss syrrtype)

<

symval s sav. value;
setvalue (); /* Assign values to symbol table variables*/

>

else
error (57); /* Variable not in syrrbel table */

else
<

syrrval = sav.value;
syTtype s savetype;
addsym (); /* Add a new variable to symbol table*/

>

77

ni>ti>**tttii*ttn EXPRESSION FUNCTION it*************************/

EXPRESSION determines If the tcker is a valid arithmetic
expression. An. arithmetic expression is defined as a terrr

optionally followed by a arithmetic operator and a subexpression.
A term is either an expression, an identifier, a number or a

string. A subexpresion is a ter* optionally followed by an
operator and a subexDression •

If a valid expression is fcurd, it's value is stored in the
variable "exp. result" and true is returned. Otherwise false is

returned.

Functions used: error(22/50) , lookup, next, pop, pushocratot,
pushidoperand , set.prec

Globals used; exp. result, syrid, symtyoe, symval, token, token. type
Constants used: arith. od. token , id.toxen, int. token

Author: David J. Smania
Last Update 22 Sep 83

/* Check for '(' lead of exp */

/* Push '(* on stack

/* Check for integer RH5 */

/* Check for identifier RHS */

expression O
{

m. = ;

n = 0;
last.prec a 0;

if C(strcffD(token,"C") == 03)
<

pushoprator ()?
next ();
if (token. type ss int. token)

savetyoe s *I';
else

if (token. type == id. token)
<

strcpy(symid, token);
if (lookup ())
savetyoe = symtyoe;

else
savetyoe s 'C;

>

/t******************* LOOP THROUGH RHS *********»********************/

while (tokenCO] != ';') /* Loop until ';' is read */

{

if (strcm.o(token, M (") == 0)

<

pushoorator ();
next();

78

}

else
If (strcmp(token, w

) ") == 0) /* Enter pop routines */
<

dop C);
set.prec ();
next ();

>

else
If (token. type = = Id. token) /* LookUD identifiers */

<

strcpyCsytrid, token);
if (! lookup ())

error (55);
else

<

pushidoperand ();
next ();

>

}

else
if (token. type int. token) /* Push integer tokens */

<

synoval s atoi(token);
pushintoperand ();
next ();

>

else
/* Check operator precedence */

if (token. type a= arith. op. token)
if (check. pri ())

<

pushoprator ();
next ();

>

else
{

pop ();
set.prec ();

>

else
error (21);

/********************** end WHILE LOCP *****************************/

if ((operatorCO] - '(') && (operatorCU = ')'))
i

exp. result = operand C — — m 3 ;

syrrtval a exp. result;
return (true);

>

79

else
error (22);

>

else
return (false);

80

/****************** PUSH INTEGER FUNCTION **************************/
/*
* This function pushes the Incommina integer token onto the stack
* operand Cm] .

*

* Author; David J. Smania
* Last Updata 25 September 83

*/

pushintoperand ()

<

operandCm] s atoi(token);

>

/ ********************* PUSH IDENTIFIER FUNCTION *******************/
/*
* This function pushes the identifier value operands onto the
* stack cperard Cm]

.

*

* Author: David J. Smania
* Last Updata 24 September 83

*/

pushidoperand O
<

operandCm] = symval;
++m;

>

/ ***x******m******* PUSH OPERATOR FUNCTION *************************/
/*
* This function pushes the incommina operator onto the stack
* operator [n]

.

*

* Author: David J, Smania
* Last Updata 23 September 83

*/

pushoprator CD

<

operatorCn] » tokentO];
++n j

81

/****************** CHECK PRIORITY FUNCTION ***********************/

* Check the incomina operator prececdence with the existing hinhest
* precedence, last.prec, value. M cdlfy if incorrinirq is qreater.
*

* Author: David J, Srraniai
* Last Update 23 September 83

«/

check.pri ()

<

if (opr.value > last.prec)
(

last.prec » ocr.value;
marker = n;
return (true);

}

else
if (ocr. value as last.prec)

return(true) ;

else
return (false);

82

/t*s*********s**»******* pep FUNCTION *****«****************»********/
/*
* Pec the operators and ccer»r~s off treir respective stacks
* acccrdi?*a to the t c '< e n read.

* Author: David J. Srraria
* Last Update 23 SecteTper 83

*/

pec (

J

i n t i , d c n e

;

done = ;

—n;

if tstrcapctokep,")"] == 0) /* Fop until ' (' is found */

«rile [operator Cn] != '(')

<

a = cperardCmJ;

b s operandi] ;

cnec<.tc'<en ();

>

else
* n 1 1 e Cn >s farmer)
<

a = operand[rr];
• ;

p a operandi*];
cnec*.tc'<er. ();

>

return;

/* Pec until lower precedence »/

83

,t,:.«u,iu«i«i,u»*i» SET PRECEDENCE I****************************/
/*
* Set the precedence variable last.prec to the hiqhest precedence
* operator In the stack operatorCn],
* Author: David J, Smania
* Last Ucdate 23 September 83

»/

set.prec ()

i

int I, done;

dene s n

•

+ + n;
operatorCn] a tokenCO];
for Ci=0; (Ci<an) && Cidone) && Coperatorti] •= ')*)); I + +)

<

if CCoperatorU] a= '') II CcperatorCI] aa '-'))

<

last.prec = 1;

done a true;
marker i;

>

else
last.prec = 0;

>

return;
>

/jitttituiMtttMiMt PERFORM ARITHMETIC **************»***********/
/*
* Perform arithmetic operations based on operatorCn] found. Store
* results In operandCm],
*

* Author: David J. Smania
* Last Update 23 Septemper 83

*/

check. token C)

<

if (ODeratorCnl == '*)
<

oDerandCrr] a (a b);

—n;
>

else
if (operatorCn] a= »«')

<

operandCm] a (b - a);
mi
--n;

84

>

else
if (operator Cn] == '*')

<

ocerandCrr] = (a * fc);

* + *;
—n;

>

else
if Coperatortnl == V]

<

operandi] s (e / a);

—n;
>

return;

/********************* END LET.STATEMENT ****************************/

85

/*
* This procedure receives data from either the screen (CRT) or a

* resident file. The function first checks for the user's recuested
* display device then responds to the user's data reauests. Two
* types of data inout requests are avaiiahie to the user: from a

* file on the user's disk; or a variable stored in the symble table,
* Global variable sav.dev stores the user's device reauest.
*

* Function used! next, error C20/56) , device, id. list, addsyir
* Globals used: sav.dev, get.dev, strlnq, sptr, symtype, sytrval,

input
* Constants used: null, stringsiz
*

* Author: havid J, Smania
* Last Update 22 Sep 83
V
•include <stdio.h>
•include <ctyoe.h>
include "global

.

interp"

/* Link standard I/O */
/* Link integer check routine */
/* Link all program canstants */

char savetype;
int sav.val;

/* Declare local variables */

get. statement ()

<

int bad;
•If debug
orintfC "GET.STATEMENT entered.O);
•endif

if (i deviceO)
<

error (20)

;

return;
>

strcpy(aet.dev, sav.dev);
if (strcmp(get.dev,"CRT M

) ==0)
< while (id.list ())

<

if (savetype == 'S')
gets (string);

else if (savetype ss 'i')
{

scanf C" %d",&symval) ;

setvalue O;
}

else if (savetvpe == *C*3
<

symval a getcharO?
setvalue ();

else

/* Entering get statement */

/* Declare get variables */

/* Check for device token */

/* Invalid device type */

/* Save device name in get.dev*/

/* Loop until id. list Is empty*/

/* Check saved token type */

/* Identifier is unknown */

86

gets(strinq);
sotr = strina;

for (badsfalse; ((*sptr != NULL) && (*sptr
&& Ubad)); ++sptr)

i = * ')

If (i isdiqit(*sptr))
bad s true;

if C!bad)
< symtype s 'I';

svmval = atoi(strino) ;

>

else
< If (strlen(strinq) == 1)

{ symtype » *c';
symval s token CO] ;

)

else

/* Is input a digit */

>

symtype = 'S';

/* bypass input variable
/* end of while loop

/ Invalid device input

/* Open file to read only
/* Loop until id_list is empty */

addsymC)

;

>

next ();
>

}

else
if (strcmp(get.dev,"LST") ==0)
{ error(55);
returnCf alse) ;

>

else
< input = fopenCqet.dev, "r")

;

while (id. list ())

{

if (savetype ss 's')
fgets (string, stringsiz, input);

else if (savetype == 'I')
< fscanf (input," %d" ,&symval) ;

setvalue()

;

>

else if (savetype am »c*)
{ fscanf (incut," %c" ,&symval) ;

setvaiueO ;

>

else /» identifier is unknown
{

fscanf (input," %s", string);
sptr = string;

for (badsfalse; ((*sctr != NULL) && (*sptr 1 = ' ')

&& Ubad)); ++sptr)
if (! isdigit(*sptr)) /* Is input a digit?

*/
*/

*/

*/

*/

*/

87

bad = true;
if Cbad)
{ syrrtyce = 'I';

syr*val = atoi(string) ;

}

else
< it CstrlenCstring) == 1)

{ symtype = 'C;
sv*val = token CO] ;

}

else

>

symtype = 'S';

addsyrcC)

;

>

next ();
>

}

/* bypass input variable
/* end of while loop
/* end of file processing

*/
*/
*/

•i£ debugget
printfCAt end of GET, token = %s0, token);
tendif

return;
} /* end get.statement */

88

iitin««ii«u»ii»»uuu ID. LIST FUNCTION ************************** /

/*
* The id. list function checks if the input variable is already
* declared in the symbol table. If true, it saves the data type for
* type checking. A data tyce of *U* undefined is set otherwise,
*

* Function used: lookup
* Globals used: symtype, token
* Constants used: id. token
*

* Author: David J, Smania
* Last update: 22 Sep., 1983

*/

id. list n
<

if Ctoken.type i= id. token)
returntfalse) ;

strcpy (symid, token) ; /* Place token in symid for lookup check*/
if (lookup ())

savetype symtype; /* Save token tvpe for latter comparison*/
else

savetype = 'U';
return (true);

>

/**************** END GET.STATEMENT *********************************/

89

PUT.STATEMENT outputs to either the screen (CRT)
or the printer (LST) data stored In a variable a

string or a file. The function first checks for the
appropriate display "device" then responds to the
users data requests. Two tvpes cf data requests
are available: a variable stored in the symbol table:
or a string. Global variables rut.dev, symval and
savetype store the device name, the token value and
token type respectively.

Functions used: next, error(25), list, device,
Globals used: outcut, out.dev, sav.dev, string,

token, token. type
Constants used: none

Author: David J. Srrania
Last Update 22 Sep 83

nclude <stdio,h>
nclude "global, interp"

char savetype;
int sav.val;

/* Standard I/C link */
/* Link all program canstants */

/* Declare local variables */

/* Entering put case statement */

/* Check for device token

/* Invalid device type

put. statement ()

<

•if debug
printf ("PUT.STATEMENT entered.O);
•endif

if (! deviceO)
{

error(25) ;

return;
>

strcpy (put.dev,sav.dev) ; /* Sawe device name
if Cstrcmp(put.dev,"CRT") ==0)
{ if (!strcmp(tcken,"SKIP"))/* Skip a line

< printf ("0);
nextO? /* bypass SKIP

>

while (list ()) /* Loop until list is terminated*/
i

•if debugput
printf ("--List returned true with token = %s0, token);
•endif

if (savetype »» 'S') /• Checks for token type */
puts(string) ;

else
if (savetype sa # l')
printf("%d ",sav.val);

*/

*/

*/

*/

*/

90

else
orintf(H %c ",sav.val);

next ();
> /* end while list */

> /* end if c»T */
else

if (strcir>p(put.dev,"LST") = = 0)
while (list ())
<

printf ("toqglinq orinterO);
next ();

>

else
<

/* Cpen file with 'a' attribute*/
output = fopenCput-dev, "a")

:

*if debuaput
printf C "Openinq new file %s0 ,put.dev) ;

iendif
if (!strc»PCtofcen,*SKIP"))/* Skip a line in the file */
< printf C"0);
nextO; /* bypass SKIP */

>

while (list ()) /* Lcop until list empty */
<

if Csavetype == 'S') /* Checks for token type */
fputsCstring, output);

else
if Csavetyoe == 'I')

fprintf Coutout , "%d ",sav„val);
else

fprintf (output, "%c " , sav.val) ;

next ();
>

fclose(output) ; /* Close data file */

}

#if debuqput
printf("At end of put, token %s0, token);
*endif

return;
>

91

/***************f****LIST FUNCTION*************************/
/*
* The list function checks fcr the cutPut token supplied hy
* the user. The ccrresoonding token data values are stored
* aoDropriately for later conrpariscn.
*

* Functions used: next, error(55), lockup
* Globals usedj string, symid, sy^val, symtype, token
* Constants used: id. token, int. token, str. token
*

* Author: David J. Sirania
* Last Update 22 Sep 83

*/

*/
*/

list ()

if (token. type == int.token)
<

sav.val s atoi(token); /* Save token value
savetype = 'I'; /* Save token type
return (true);

}

if Ctoken.type == id. token)
<

/* Place token in syinid for lookup check */
strcpytsymid, token);
if C lookup ())
<

/* Save token type for later comparrison */
savetype s syrrtyoe;
sav.val = syrrval; /* Save variaole value */
return (true);

>

error (55); /* Unidentified variable */

return (false);
>

if (token. type == str.token)
<

savetype s 'S';
return (true);

>

return (false); /* Error no rcatch
/* end list

*/
*/

/*****************ENC PUT.STATEMENT **********************************/

92

/*
* DEVICE determines if the current token is a valid
* I/C device name, A valid device is defined as either
* "CRT" for the user's console, "1ST" f r the line printer
* or a filename. The file name is structured acccrdina
* to the file namina conventions of the CPM operatinn
* system. That is, a name ODtionally oreceeded by a one
* character disk: drive designator with a colon and
* optionally followed by a ceriod with a three character
* file type.
* if a valid device is found, it is stored in the
* variable "sav.dev" and true is returned. Otherwise,
* false is returned.
*

* Functions used: next, error(26/30)
* Globals used: sav.dev, token, token. type
* Constants used: id. token
*

* Author: David J. Smania
* Last Update 22 Sep 83

*/

iinclude <stdio,h>
#include "global, interp" /* Link all program canstants */

/*********************DEVICE FUNCTION**********************/

device ()

<

#lf debug
printf ("DEVICE entered. 0);
tendif

if (token. type 1= id. token)
return (false);

if ((strcmp(token,"CRT") ==0) II (strcmp(token, "LST") ==0))

<

#if debugput
printf ("--device = %s0, token);
tendif

/* Save display type */
/* bypass CRT I LST */

strcpy(sav.dev, token) ;

next ();
return (true);

>

strcpy (sav.dev, token) ;

next ();
if (strcmp(token,": N

) ==0)

<

s treat (sav.dev, token) ;

next ();
if (token. tvpe != id. token)

return (false);
s treat (sav.dev, token) ;

/* bypass fname I drive */

/* bypass : */

93

next ();
}

/* bypass fname */

If (strcmp(token, ».") ==0)
{

s treat (sav.de v, tofcen)

j

next (); /* bypass .

if (token. type 1= Id.tcKen)
return (false)?

strcat(sav.dev,token);
next (); /* bypass ftype

}

return (true);

*/

*/

)

ti«ii.ui«..,» (t*iiiu»«M END DEVICE **********************/

94

/*
*

*

*

*

*

*

*

*

*

IF statement executes a set of
logical value of the the iF-cla
true (not 0), the THEN-aroup of
If the TF-clause value Is false
statements Is executed.

The ELSE-qrcup is optional.
exist, the entire IF statement

Functions used: next, error(16/
Globals used: token, token. type
Constants used: symsiz, log. op.

Author: Dennis J, Ritaldato
Last update: 22 Sep 1993

statements based on the
use. If this value is

statements is executed.
(0), the ELSE-orouo of

If It does not does not
is skipoed.

17/27/54), statements
, symid, symval
token, loo.func. token

*/
iinclude <stdio.h>
Include "global .Interp"

int log.result a 0;
Int term s 0;
int sub = 0;

#if debuaif
Int level = 0;
#erdif
If. statement C)

<

* if debug
printf ("IF.STATEMENT entered.0) ;

n endif
if (• log.expo)

< error(54);
return?

}

• if debugif
printf ("--log-result at level
fendif

if Clog.result)
< if C strcmp(token, w THEN")

< errorCIS);
return;

}

#If debugif
printf ("--THEN found. 0);
#endif

next C)

;

statementsC) ;

%d is %d.O, level, log. result)

;

)

while
}

else

/*
/*
/*

(strcmpCtoken,"ENDIF")

bypass THEN
execute then clause
skip else clause
) nextc);

/*
<

*if
while (

debugif

skip then clause
strcmpCtcken^ELSE")) nextC);

*/
*/
*/

*/

95

/* bypass ELSE
/* execute else clause

prlntf ("--ELSE found. 0);
iendif

rextC):
statementsO;

}

if (strcmp(tok:en,"ENDIF"))

< error(17);
return;

>

nextC); /* bypass ENDIF
return;

} /* end if.statement

*/

96

/*
*

*

*

*

*

*

*

*

*

*/

log
<

i

c

LCG.EXP determines If the current token is a logical
expression, A logical expression is defined as a

logical term, optionally followed by both a logical
operator and a looicai subexpression. The entire
logical exoression must be enclosed in parentheses.

If a loaical expression is found, it's value is
stored in the variable " loo. result " and true is
returned. Otherwise, false is returned.

Author: Dennis J, Ritaldato
Last update: 22 Sep 1983

.exp()

nt lhs a o, rhs = 0;
har operator Csymsiz) ;

lif debugif
printf ("Entered loo.exp.O);
endif

if (strcmp(token,"("))

return(false) ;

nextO; /* bypass H
C */

#if debugif
printf ("—— Lef t paren found for level %d. ",ievel++);
printfC New token Is %s0, token);
tendif

if (! log-term())

return(false) ;

#if debugif
printf ("-— -In loo.exp, log. term returned %d ",term);
printfC with token %s.0, token);
printf ("----and token. type of %d,0, token. type) ;

*endif
lhs = term;
if ((token. type == log. op. token)

I j (token. type == loo.f unc.token))

< strcpy(operator, token) ;

nextO; /* bypass operator */
• If debugif
printf ("----Logical expreession operator, Is, f ound.O , operator) ;

• endif
if (! sub.logO)

return(false) ;

rhs = sub;
log.result = computedhs, operator , rhs) ;

if debuaif
printf ("----Compute returned %d,0 , leg.result) ;

tendif
if (istrcmp(token, ,»)"))

< nextO; /* bypass ")" */

97

#lf debuqif
printfC "--Right paren for level %d compound expression .0

,

level) ;

prlntf ("--with next toKen of %s.C, token);
#end.if

returnC true) ?

>

else /* matching right paren not found */

< error (27);
returnCfalse) ;

>

}

else if C !strcrop(token,")"))

{ loa. result * lhs;
nextO; /* bypass ")" */

return C true) ;

)

else /* matching right paren not found */

errorC27) ;

returnCfalse) ;

> /* end log.exp */

98

/*
* SU8-LCG determines if the current token is a logical
* subexpression. A sub expression is defined as a

* logical terrr, octionally followed by a logical operator
* followed by either a logical subexpression or a
* logical expression.
* If a loaical subexpression is found, it's value is
* stored in the variable "sub" and true is returned,
* Otherwise, false is returned,
*/

sub.logC)

<

int lhs = 0, rhs = 0;
char operator CsyrrsizJ ;

• if debugif
printf ("Entered sub. log, 0);
•endif

if C ! log.termO)

return(false) ;

lhs a term;
if C (token-type is log_op. token)

&& (token-type is log-f unc. token))

< sub s ins?
return(true) ;

>

strcpy(operator, token);
nextO; /* bypass operator
if (sub.logO)

{ rhs s sub;
sub s comoutedhs , operator, rhs) ;

•if debugif
printf ("----In sub-log, sub-log returned %d.0,sub);
#endif

return (true);
>

if (log.expO)

< rhs s log-result;
#if debugif
printf ("----In sub-log, log.exp returned %d.0,rhs);
•endif

sub s comDutedhs , operator , rhs)

;

return (true);
>

return (false)?
) /* end sub-log

*/

*/

99

/* LOG.TERM determines if the current tofcen is a term
* in a logical expression. A term is defined as a

* logical expression, an identifier or a number.
* If a term is found, it's value is oiaced in the
* global variable "term" and true is returned.
* Otherwise, false is returned.
*/
loa.term()

<

#if debuglf
Printf ("Entered Log. term, 0);
*endif
if C log.expO)

< term = log-result;
return(true) ;

>

if (token. type ss id. token)
< strccyCsymid, token) ;

lookuoC) ;

term s symval;
nextO? /* bypass identif;
term s symval;

#if debugif
printf ("----Identif ier value %d was f ound.O, term) ;

#endif
return(true) ;

>

if (token. type ss int. token)
< term r atoi(token);
nextO; /* bypass integer

#if debuoif
printf ("----Integer value %d was f ound.O , term) ;

#endif
return(true) ;

>

return(f alse)

;

> /* end log-term

*/

*/

*/

100

with %d %s %d.Q, ihs,OD,rhs) ;

)

)

/*
* COMPUTE performs the operation specified in the
* parameter H oc" and returns a value of true or false.
*/

compute (lhs , op, rhs)
int lhs, rhs, * o c

;

{

#if debugif
printf C "Entered compute
•endif

if (!strcmD(op,"EG")
{ if (lhs s= rhs)

returnC true) ;

r e t u r n (f a 1 s e)

;

>

if (istrcmpCop,"LT")
{ if Clhs < rhs)

returnC true) ;

return(false) ;

>

if (!strcmp(op,"GT")
< if Clhs > rhs)

returnCtrue);
returnCfalse) ;

>

if C !strcmoCop, N NE'1
)

< if Clhs »s rhs)
returnCtrue) ;

return(false) ;

>

if C !strcmpCop,"LE")
{ if Clhs <= rhs)

returnCtrue) ;

returnCf alse) ;

>

if C istrcmpCop,"GE")
< if Clhs >= rhs)

returnCtrue) ;

returnCfalse) ;

>

if C !strcmoCop,"AND")
< if Clhs & rhs)

returnCtrue) ?

returnCfalse) ?

>

if C istrcmpCop^'OP'1
)

{ if Clhs I rhs)
returnCtrue) ;

returnCfalse) ;

>

if C istrcmpCop,"NCT")
returnC !lhs);

)

)

)

101

If (!strcn»p(op,"CCN")
{ putsCCON is not yet
returnCfalse) ;

>

)

irrplerrentedC);

/* end compute /

102

CASE.STATEMENT executes a set of statements based
upon the case variatle. If one of the cases matches
the value of the case variable, that set of statements
Is executed. If none match, the otherwise set of
statements is executed.

Functions used: lookup, next, case.num,
error (23/3 1/32/ 33/55) , statements

Globals used: token, token. type, symld, symval
Constants used: id. token, int. token,

Author: Dennis J. Ritaldato
Last update: 22 Sep 1983

linclude <stdio.h>
*include M alobal. interp"

int caseval;
case-statement O
{

#if debug
printfC CASE.STATEMENT entered. 0);

•endif
if (token. type ss id. token)
< strcpy (symid, token) ;

if (I lcokupO)

{ error(55);
return;

>

caseval = symval;
}

else if (token. type as int. token)
caseval = atoi(token);

else
< error(23);
return;

}

next() :

if (strcmp(token,":"))

< error(31);
return;

>

nextO ;

if (1 case.num())

< if (strcmp(token, "OTHERWISE"))

{ error(32);
return;

>

next ()

;

if (strcmp(token,":"))

< error(31);
return;

/* get case variable */
/* and save its value */
/* undefined variable */

/* not integer or vaiable */

/* bypass case variable */

/* bypass : */

/* bypass OTHERWISE */

103

}

next ()

;

state mentsC);
>

if C strcmp(token,"ENDCASE")
< error(33);
return;

>

next O ;

/* bypass */

/* bypass endcase
/* end case. statement */

104

/*
* CASE.MJM executes a set of statements based upon
* the case variable. If one of the cases matches
* the value of the case variable, that set of statements
* Is executed and true Is returned.
* Otherwise, false Is returned.

* Functions used: lookup, next, case.num, error(55), statements
* Glcbals used: token, token. type, symid, symval
* Constants used: Id. token, Int. token,
*

* Author: Dennis J, Rltaldato
* Last update: 22 Sep 1983
*/

Include <stdlo.h>
case-numC)

<

lnt found;
lnt saveval;

for Cfound=false; CstrcmpCtoken , "OTHERWISE") !=0) & (! found);)

{

#if debugcase
prlntf ("--Inside for loop.O);
«endlf

if (token. type :s id. token) /* maybe an identifier
{ strcpy(symld, token) ;

#lf debugcase
printfCAn Identifier token, %s, was found. 0, token) ;

#endif
nextC) ?

if (istrcmp(token,":"))

{ nextO;
if (I lcokupO)

{ error(55);
return(f alse) ;

>

if (caseval == symval)
found = true;

}

/* bypass identifier

/* bypass :

/* check this case item
/* against the case value

>

else if (token. type as int. token) /* maybe an integer
< saveval = atoi(token);

#if debuqcase
printf ("--An integer case option of %6 was found. 0, saveval) ;

tendif
nextO; /* bypass integer
if (lstrcmp(token,":"))

< nextO; /* bypass :

if (caseval s= saveval) /* check this case item
found s true;

*/

*/

*/

*/

/* against the case value */

>

105

>

else
{ while Cstrcmpctoken,";"))

nextC)

;

tlf debuqcase
orintf("--Nq valid case num was found. 0);
fendif

nextC) ;

>

)

#if debuqcase
printf ("--End of for loop.O);
#endif

/* must not be the proper */
/ case so skip rest cf line*/

/* bypass ;

/* end-for

*/

*/

if C J found)

returnCfalse) ;

statementsC)

;

while (strcmp(token,"ENDCASE"))

next C)

;

return(true) ;

/* sKip remaininq statement*/
/* in the case */

/* end-case. num */

106

Lcop repeats a set of statements a specified number
of times. Any number of repetitions may be specified
via either a number constant or variable entry.

Only one level of looping is implemented in this
version. To implement multiple levels, chanqe the
loop-file variable name to an array. Then step
through that array.

Functions used: next, error (23/55) , lookup
Globals used: looc.cnt, symid, symval, loop-file

token, token-type, string, sotr
Constants used: int-token, id-tcken, linesiz, NULL,

LOCP-FTLE

Author: Dennis 0. Ritaldato
Last update: 22 Sec 1983

/

•include <stdio.h>
•include "global . interp"
loco-statement ()

<

int save.cnt = 0;

•if debuq
printf ("LOOP-STATEMENT entered. 0);
•endif

if (token-type == id-token)
{ strcpy(symid, token);

if (lookupO)

save-cnt = symval;
else

error (55)

;

>

else if (token-type =« int-token)
save-cnt s atoi(token);

else
< error(23);
return;

nextO ; /* bypass loop count variable */

/* NOTE: */
/* Each line must terminate with a newLine character. */
/* Lin-len should always Doint to this NEWLINE character. */
/* Except, when adding a string, the NEwLINE is added at the*/
/* end of each line and at the end of the complete string. */

looo. file = fopen(LOCP-FILE,"w") ;

while C strcmp(token, rt ENDLCCP"))

< if (token-tvpe •» str. token)

< fputs(token,looD-file); /* add identifier/number to file*/

107

fputs("0, loop-file) ;

>

else
< fDUtSC"

f puts (string, loop. file);
foutsC"

}

next C)

;

>

loop-cnt = save.cnt;
f clcseCloop-f lie) ;

/* bypass current token

/* close as write file
/* reopen for input

loop-file = fopen(LCCP.FILE,"r");

*/

*/

•if debualoop
printf C "--In loop, bypassing token %s0, token);
lendif
nextC); /* bypass the word "ENDLCOP" */

•if debugloop
printf ("--Leaving loop with token %s0, token);
•endif

return ;

) /* end loop-statement */

108

#include <stdio,h>
*irclude "global. interp"
create C)

<

prlntfC" CREATE entered. 0);
while CtoKenCO] != '?*)

next ()

?

> /* end create */

#lnclude <stdlo.h>
ilnclude "global. interp"
dlsolay C)

<

prlntfC" DISPLAY entered. 0);
while CtotcenCO] != ';')

next C)

;

> /* end dlslpay */

109

* Error performs error processing. Depending on the Input
* parameter "type" a message Is printed at the user's console
* and the function either returns or terminates the nroaram.
*

* Author: Dennis J. RItaldato & David J, Smania
* Last update: 22 Sep 1983
* /

•include <stdio.h>
iinclude "global. interp"
error (type)

int type; /* ERROR TYPES ARE: */
{

if (type <= 10) /* l-io System errors */
< printf ("**** SYSTEM ERRCR *** 0);
switch(type)
< case 1:

exitC) ;

case 2:
printf ("Symbol table exceeded. 0);
exitO;

case 3s
printf ("Premature end of input encountered .0)

;

exitO;
case 4:

printf ("Unrecognized character, %c, in line:0 ,*iptr)

;

printf ("%s0,line);

return;
case 5:

printf ("String length exceeds %d in line:0,stringsiz) ;

printf ("%s0,line);
exitO;

case 6:
printf ("Unable to oDen file - checK <FN> is capitallzedO) ;

exitO;
return;

} /* endcase */

} /* endif 1-10 */

else if (type <s 50) /* if 11-50 Reserved word */

< printf ("**** SYNTAX ERROR **** 0); /* syntax errors */
switch(type)
< case 11:

printf ("PROGRAM");
break;

case 12:
printf("AN IDENTIFIER");
break;

case 14:
printf ("END.");
break;

case 16:
printf ("THEN");

110

break;
case 17:

prlntf ("ENDIF");
break;

case IS:
orintf ("=");
break;

case 20:
Prlntf ("Device 'CRT' or a filename");
break;

case 21:
printf("AN ARITHMATIC OPERATOR");
break;

case 22:
PTintf("AN ARITHMETIC EXPRESSION");
break;

case 23:
printf("An integer or variable loop count");
break;

case 24:
printfC"An integer, identifier, string or expression");
break;

case 25:
printf ("Device 'CRT* or 'LST' or a filename");
break;

case 26:
crintf ("Filename -- (<FN> C.<FT>)) -- ");
break;

case 27:
printfC"--) --");
break;

case 30:
orintf ("Filetype -- (<FN> [,<FT>]) --");
break:

case 31:
printf("-- : --");
break;

case 32:
printf ("OTHERWISE");
break;

case 33:
printf ("ENDCASE");
break;

default:
printf (" SSSSS SYSTEM ERROR t 1 - %d SSSSS ",type);
printf (" PLEASE NOTIFY EITHER DENNIS J. RITALDATO (215) ");

crintf ("441-2107 CR DAVID J. SMANIA (408) 646-?182, 0);
return;

} /* endcase */

printf (" was expected, but %s was found at %s, , token, lctr) ;

while (token(O) != *;') /* skip remainder of line V
nextC) ;

111

return;
) /* erdif U-30 */
else If (type <= 70)
{ switchCtype) / if 51-70 General syntax */

{ case 51: /* errors */
prlntf ("No legal Command Larguaqe statement was found");
break;

case 53:
printf ("; expected");
fcreak;

case 54:
printf("An IF statement must nave a logical expression");
break;

case 55:
printf ("Undefined identifier, %s ", token);
break;

case 56:
printf("Cannot read from the list device");
break;

case 57:
orintf("Data type mismatch. A string type was exoected");
break;

case 58:
return;

case 59:
return:

case 50:
return;

default:
printf ("SSSSS SYSTEM ERRCR * 1 - %d SSSSS ",type);
prlntf (" PLEASE NCTIFY EITHER DENNIS J. RITALDATO (215) ");
printf (" 441-2107 CR DAVIC J. SMANIA. 0);
return;

> /* endcase */

prlntf (" at %s in line: 112s0 , lctr, line) ;

>

while (strcmp(token,)) rextO;/* skip rest of line */
/* endif 51-70
/* end error

*/
*/

112

LIST OF REFEBEHCES

1. Enslov. P. H. r Command Lan guage s, North-Holland
Publishing Company, TT75 "

2. Newman, W. M. and Sproul, R. F., Prin cip les of
Interact ive C omputer Graphics McGraw-Hill7~*T9vy

113

BIBLIOGRAPHY

Bidmead. C. . Cifer Serie s 1, Practical Computing, Vol. 6,
No. 4, April T9S3 * *

Ellis- J. R. , A L ISP Shell. Computer Science Department,
Yale university, &ew~"Haven7""Ct. 06520

Hendrix, J. E.. Small Sh ell Part 2 of a North* VOS, Dr.
Dobb f s Journal, Vol 77~~fl

,

o7""T7~January~"19'8'2 "

Irby. C.
f
Bergsteinsson, L. , Morgan, T., Newman, w., Tesler,

T. , A M ethodology for User Interf ace Design, Xerox Palo Alto
Researcn center, 1977 ~

Madsen, J., CCL -A High-Level Command Language Software
Practice and Experience, voT7 1 , pp7~Z5-3"0 ,""7979"

Malcom, J. A., Br evity and Clarity in Command Languages,
Sigplan Notices, vo!7~15, No7 1D7~3o£obef T3B7 — —
Marca, D. , A Repetit ion Construct for UNIX V ersi on 6,
Sigplan Notes, ""VoI7 T77~!To7 T7~SepTember"T98Z "

Martin, J., Design of ManyComputer Dialogues, Prentice-Hall,

Mayer, R. E., The Psycho l ogy of How Novices Learn Com pute r
Programming ACM Co"mpuxmg Surveys

,

"vol. ~~T3, So7 1, March"

Miller, L. A. and Thomas, J. C. Jr., Behavioral Issues in
the Use of Int era ctive Systems, International Journal of
"Han-Machine STucTTes, vol. "9, TTo. 5, September 1977

Morgan, T. P., An Applied Psychology of the User ACM
ComputmgSurveys , voTT T37""No. I7~aarcft" 7y8T"

Mozelco, H., A Human/Co mputer Interface to A cco modate
Learning Stage s, Communications of th"e"1CH7 voIT 2?', No. ~"Z,
February VT82

Newman, I. M. and Sproul, R. F., Principles of In ter a ctiv e
Computer Graphics, McGraw-Hill, 1977"

Neuhold, E.J., and Weller, T. , Specification and Proving of
Command Programs , Acta Informatica i>7~T975"~

Prictchet, C.J.; Mochinacki, S. and Yang, S.

,

RETICENT-

A

Command Langu age for Spe err o photo metric Data Redu c"uicn7
A^tronomicaiSocTety "Pacific, 7ox. 9"37"""flc". ~5oU , Aug."=Sep.
1982

Proceedings of the IFIP Working Conference on Command
Languages, Command Languages, North-Holland Publishing
Company, AmstefcfamT 1975

114

Relies, N. and Price, L., A User Interface for O nline
Assistance, IEEE, 19 81

Sandwall, E. f Unif ied Dialogue Management in the Car ouse l
System Naffah, "UT"" {e3i^orf, Processings oft lie Second
International Workshop, North Holland, 1982

Shneiderman, B., Huma n F act ors Experiments in Des igning
Interactive Systems, computer, vol.~~T7, TTo.~ TZ, December

Skjellum, A., Exp and Wildcards Under UNIX, Dr. Dobb f s
Journal, Vol. 7, flo.~TT,~No veraEer 19B2

Specification and Prov ing of Command Programs, ACTA,
Tnformafica~"5, T"976

115

INITIAL DISTRIBOTIOH LIST

Nc. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 01U2 2
Naval Postgraduate School
Monterey, California 93943

3. Department Chairman. Code 52 1

Department of Computer science
Naval Postgraduate School
Monterey, California 9 3943

4. Naval Air Development Center 2
Code 501
ATTN: Mr- Dennis J. Ritaldato
Warminster, Pa. 18974

5. Naval Air Development Center 1

Code 501
Warminster, Pa. 18974

6. LCDR David J. Smania, USN 2
27 Revere Rd.
Monterey, Ca. 9 3940

7. LCDR Ronald Modes, USN, Code 52MF 2
Department of Computer Science
Naval Postaraduate school
Monterey, Ca. 93943

8. Mr. Daniel Davis 1

Department Of Computer Science, Code 52
Naval Postgraduate school
Monterey, Ca. 93943

116

1\-35£l

207563

Ritaldato

.

A Use^-oriented
microprocessor shell

1

1 ,"
,

5BS

Thesis

R5T8T Ritaldato
c.l A user-oriented

microprocessor shell

command language inter-

preter.

&»'C4*«

v# §

